抛物线局部/非局部混合算子的一些最大原则

IF 0.8 3区 数学 Q2 MATHEMATICS
Serena Dipierro, Edoardo Proietti Lippi, Enrico Valdinoci
{"title":"抛物线局部/非局部混合算子的一些最大原则","authors":"Serena Dipierro, Edoardo Proietti Lippi, Enrico Valdinoci","doi":"10.1090/proc/16899","DOIUrl":null,"url":null,"abstract":"<p>The goal of this paper is to establish new Maximum Principles for parabolic equations in the framework of mixed local/nonlocal operators.</p> <p>In particular, these results apply to the case of mixed local/nonlocal Neumann boundary conditions, as introduced by Dipierro, Proietti Lippi, and Valdinoci [Ann. Inst. H. Poincaré C Anal. Non Linéaire 40 (2023), pp. 1093–1166].</p> <p>Moreover, they play an important role in the analysis of population dynamics involving the so-called Allee effect, which is performed by Dipierro, Proietti Lippi, and Valdinoci [J. Math. Biol. 89 (2024), Paper No. 19]. This is particularly relevant when studying biological populations, since the Allee effect detects a critical density below which the population is severely endangered and at risk of extinction.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"74 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some maximum principles for parabolic mixed local/nonlocal operators\",\"authors\":\"Serena Dipierro, Edoardo Proietti Lippi, Enrico Valdinoci\",\"doi\":\"10.1090/proc/16899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The goal of this paper is to establish new Maximum Principles for parabolic equations in the framework of mixed local/nonlocal operators.</p> <p>In particular, these results apply to the case of mixed local/nonlocal Neumann boundary conditions, as introduced by Dipierro, Proietti Lippi, and Valdinoci [Ann. Inst. H. Poincaré C Anal. Non Linéaire 40 (2023), pp. 1093–1166].</p> <p>Moreover, they play an important role in the analysis of population dynamics involving the so-called Allee effect, which is performed by Dipierro, Proietti Lippi, and Valdinoci [J. Math. Biol. 89 (2024), Paper No. 19]. This is particularly relevant when studying biological populations, since the Allee effect detects a critical density below which the population is severely endangered and at risk of extinction.</p>\",\"PeriodicalId\":20696,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/16899\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16899","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是在混合局部/非局部算子的框架内建立抛物方程的新最大原则。特别是,这些结果适用于混合局部/非局部诺伊曼边界条件的情况,正如迪皮埃罗、普罗埃蒂-利皮和瓦尔迪诺奇所介绍的那样[Ann. Inst. H. Poincaré C Anal. Non Linéaire 40 (2023), pp.]此外,它们在涉及所谓阿利效应的种群动态分析中也发挥着重要作用,迪皮埃罗、普罗埃蒂-利皮和瓦尔迪诺奇[J. Math. Biol. 89 (2024),论文编号 19]对此进行了研究。在研究生物种群时,这一点尤为重要,因为阿利效应可以检测到一个临界密度,低于这个密度,种群就会严重濒危,面临灭绝的危险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some maximum principles for parabolic mixed local/nonlocal operators

The goal of this paper is to establish new Maximum Principles for parabolic equations in the framework of mixed local/nonlocal operators.

In particular, these results apply to the case of mixed local/nonlocal Neumann boundary conditions, as introduced by Dipierro, Proietti Lippi, and Valdinoci [Ann. Inst. H. Poincaré C Anal. Non Linéaire 40 (2023), pp. 1093–1166].

Moreover, they play an important role in the analysis of population dynamics involving the so-called Allee effect, which is performed by Dipierro, Proietti Lippi, and Valdinoci [J. Math. Biol. 89 (2024), Paper No. 19]. This is particularly relevant when studying biological populations, since the Allee effect detects a critical density below which the population is severely endangered and at risk of extinction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
207
审稿时长
2-4 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to shorter research articles (not to exceed 15 printed pages) in all areas of pure and applied mathematics. To be published in the Proceedings, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Longer papers may be submitted to the Transactions of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信