Oliver Daniel Schreiner, Petrisor Samoila, Thomas Gabriel Schreiner, Diana Socotar, Romeo Cristian Ciobanu
{"title":"羧甲基纤维素功能化磁铁矿纳米粒子的合成与表征--作为太赫兹光谱对比剂在肿瘤学中的应用","authors":"Oliver Daniel Schreiner, Petrisor Samoila, Thomas Gabriel Schreiner, Diana Socotar, Romeo Cristian Ciobanu","doi":"10.3390/cryst14080696","DOIUrl":null,"url":null,"abstract":"This paper describes a process to obtain magnetite functionalized with carboxymethylcellulose via coprecipitation by means of a preliminary stabilization of magnetite in citric acid. The magnetite assemblies successfully passed in vitro and in vivo tests of bio-compatibility. The measured values for the dielectric loss factor are remarkably high, a prerequisite for the assemblies’ potential use as contrast agents. Broadband THz spectroscopy analysis was performed to identify the most relevant frequency bands (here, 3.2–4 THz) where the signal difference between normal cells and cancer cells is relevant for the particles’ potential use as contrast agents for THz imaging, with applications in oncology.","PeriodicalId":10855,"journal":{"name":"Crystals","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and Characterization of Carboxymethylcellulose-Functionalized Magnetite Nanoparticles as Contrast Agents for THz Spectroscopy with Applications in Oncology\",\"authors\":\"Oliver Daniel Schreiner, Petrisor Samoila, Thomas Gabriel Schreiner, Diana Socotar, Romeo Cristian Ciobanu\",\"doi\":\"10.3390/cryst14080696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a process to obtain magnetite functionalized with carboxymethylcellulose via coprecipitation by means of a preliminary stabilization of magnetite in citric acid. The magnetite assemblies successfully passed in vitro and in vivo tests of bio-compatibility. The measured values for the dielectric loss factor are remarkably high, a prerequisite for the assemblies’ potential use as contrast agents. Broadband THz spectroscopy analysis was performed to identify the most relevant frequency bands (here, 3.2–4 THz) where the signal difference between normal cells and cancer cells is relevant for the particles’ potential use as contrast agents for THz imaging, with applications in oncology.\",\"PeriodicalId\":10855,\"journal\":{\"name\":\"Crystals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/cryst14080696\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/cryst14080696","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
Synthesis and Characterization of Carboxymethylcellulose-Functionalized Magnetite Nanoparticles as Contrast Agents for THz Spectroscopy with Applications in Oncology
This paper describes a process to obtain magnetite functionalized with carboxymethylcellulose via coprecipitation by means of a preliminary stabilization of magnetite in citric acid. The magnetite assemblies successfully passed in vitro and in vivo tests of bio-compatibility. The measured values for the dielectric loss factor are remarkably high, a prerequisite for the assemblies’ potential use as contrast agents. Broadband THz spectroscopy analysis was performed to identify the most relevant frequency bands (here, 3.2–4 THz) where the signal difference between normal cells and cancer cells is relevant for the particles’ potential use as contrast agents for THz imaging, with applications in oncology.
期刊介绍:
Crystals (ISSN 2073-4352) is an open access journal that covers all aspects of crystalline material research. Crystals can act as a reference, and as a publication resource, to the community. It publishes reviews, regular research articles, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Full experimental details must be provided to enable the results to be reproduced. Crystals provides a forum for the advancement of our understanding of the nucleation, growth, processing, and characterization of crystalline materials. Their mechanical, chemical, electronic, magnetic, and optical properties, and their diverse applications, are all considered to be of importance.