能量临界克莱因-戈登方程基态能量以上的全局动力学

IF 1.2 2区 数学 Q1 MATHEMATICS
Tristan Roy
{"title":"能量临界克莱因-戈登方程基态能量以上的全局动力学","authors":"Tristan Roy","doi":"10.1090/tran/9158","DOIUrl":null,"url":null,"abstract":"<p>Consider the focusing energy-critical Klein-Gordon equation in dimension <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d element-of StartSet 3 comma 4 comma 5 EndSet\"> <mml:semantics> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>∈</mml:mo> <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo> <mml:mn>3</mml:mn> <mml:mo>,</mml:mo> <mml:mn>4</mml:mn> <mml:mo>,</mml:mo> <mml:mn>5</mml:mn> <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">d \\in \\{ 3,4,5 \\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> <disp-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartLayout Enlarged left-brace 1st Row 1st Column partial-differential Subscript t t Baseline u minus normal upper Delta u plus u 2nd Column a m p semicolon equals StartAbsoluteValue u EndAbsoluteValue Superscript StartFraction 4 Over d minus 2 EndFraction Baseline u comma 2nd Row 1st Column u left-parenthesis 0 comma x right-parenthesis 2nd Column a m p semicolon colon-equal f 0 left-parenthesis x right-parenthesis comma 3rd Row 1st Column partial-differential Subscript t Baseline u left-parenthesis 0 comma x right-parenthesis 2nd Column a m p semicolon colon-equal f 1 left-parenthesis x right-parenthesis EndLayout\"> <mml:semantics> <mml:mrow> <mml:mo>{</mml:mo> <mml:mtable columnalign=\"left left\" rowspacing=\".2em\" columnspacing=\"1em\" displaystyle=\"false\"> <mml:mtr> <mml:mtd> <mml:msub> <mml:mi mathvariant=\"normal\">∂</mml:mi> <mml:mrow> <mml:mi>t</mml:mi> <mml:mi>t</mml:mi> </mml:mrow> </mml:msub> <mml:mi>u</mml:mi> <mml:mo>−</mml:mo> <mml:mi mathvariant=\"normal\">Δ</mml:mi> <mml:mi>u</mml:mi> <mml:mo>+</mml:mo> <mml:mi>u</mml:mi> </mml:mtd> <mml:mtd> <mml:mi>a</mml:mi> <mml:mi>m</mml:mi> <mml:mi>p</mml:mi> <mml:mo>;</mml:mo> <mml:mo>=</mml:mo> <mml:mrow> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mi>u</mml:mi> <mml:msup> <mml:mrow> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mrow> <mml:mfrac> <mml:mn>4</mml:mn> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>−</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:mfrac> </mml:mrow> </mml:msup> <mml:mi>u</mml:mi> <mml:mo>,</mml:mo> </mml:mtd> </mml:mtr> <mml:mtr> <mml:mtd> <mml:mi>u</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mtd> <mml:mtd> <mml:mi>a</mml:mi> <mml:mi>m</mml:mi> <mml:mi>p</mml:mi> <mml:mo>;</mml:mo> <mml:mo>≔</mml:mo> <mml:msub> <mml:mi>f</mml:mi> <mml:mrow> <mml:mn>0</mml:mn> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>,</mml:mo> </mml:mtd> </mml:mtr> <mml:mtr> <mml:mtd> <mml:msub> <mml:mi mathvariant=\"normal\">∂</mml:mi> <mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> </mml:msub> <mml:mi>u</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mtd> <mml:mtd> <mml:mi>a</mml:mi> <mml:mi>m</mml:mi> <mml:mi>p</mml:mi> <mml:mo>;</mml:mo> <mml:mo>≔</mml:mo> <mml:msub> <mml:mi>f</mml:mi> <mml:mrow> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mtd> </mml:mtr> </mml:mtable> <mml:mo fence=\"true\" stretchy=\"true\" symmetric=\"true\"/> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\begin{equation*} \\begin {cases} \\partial _{tt} u - \\Delta u + u &amp; = |u|^{\\frac {4}{d-2}} u, \\\\ u(0,x) &amp; ≔f_{0}(x), \\\\ \\partial _{t} u(0,x) &amp; ≔f_{1}(x) \\end{cases} \\end{equation*}</mml:annotation> </mml:semantics> </mml:math> </disp-formula> with data <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis f 0 comma f 1 right-parenthesis element-of script upper H colon-equal upper H Superscript 1 Baseline times upper L squared\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>f</mml:mi> <mml:mrow> <mml:mn>0</mml:mn> </mml:mrow> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>f</mml:mi> <mml:mrow> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>∈</mml:mo> <mml:mrow> <mml:mi mathvariant=\"script\">H</mml:mi> </mml:mrow> <mml:mo>≔</mml:mo> <mml:msup> <mml:mi>H</mml:mi> <mml:mrow> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mo>×</mml:mo> <mml:msup> <mml:mi>L</mml:mi> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(f_{0},f_{1}) \\in \\mathcal {H} ≔H^{1} \\times L^{2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We describe the global dynamics of real-valued solutions of which the energy is slightly larger than that of the ground states’. We classify the flows of the solutions that are ejected from a small neighborhood of the ground states or that are away from them. The classification relies upon a modification of the arguments of Payne and Sattinger [Israel J. Math. 22 (1975), pp. 273–303] to prove blow-up in finite time, and a modification of the arguments of Ibrahim, Masmoudi, and Nakanishi [Anal. PDE 4 (2011), pp. 405–460], Kenig and Merle [Invent. Math. 166 (2006), pp. 645–675; Acta Math. 201 (2008), pp. 147–212], and Krieger, Nakanishi, and Schlag [Discrete Contin. Dyn. Syst. 33 (2013), pp. 2423–2450] to prove scattering as <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"t right-arrow plus-or-minus normal infinity\"> <mml:semantics> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">→</mml:mo> <mml:mo>±</mml:mo> <mml:mi mathvariant=\"normal\">∞</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">t \\rightarrow \\pm \\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. There are three main differences between this paper and that of Krieger, Nakanishi, and Schlag [Discrete Contin. Dyn. Syst. 33 (2013), pp. 2423–2450]. The first one is the lack of scaling symmetry. The second one appears in the proof of the ejection lemma: one has to control the mass in the ejection process. The third one appears in the proof of the one-pass lemma: in the worst scenario, one cannot use the equipartition of energy and therefore one has to prove a decay estimate which allows to use an argument of Bourgain [J. Amer. Math. Soc. 12 (1999), pp. 145–171].</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global dynamics above the ground state energy for the energy-critical Klein-Gordon equation\",\"authors\":\"Tristan Roy\",\"doi\":\"10.1090/tran/9158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Consider the focusing energy-critical Klein-Gordon equation in dimension <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"d element-of StartSet 3 comma 4 comma 5 EndSet\\\"> <mml:semantics> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>∈</mml:mo> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">{</mml:mo> <mml:mn>3</mml:mn> <mml:mo>,</mml:mo> <mml:mn>4</mml:mn> <mml:mo>,</mml:mo> <mml:mn>5</mml:mn> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">}</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">d \\\\in \\\\{ 3,4,5 \\\\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> <disp-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"StartLayout Enlarged left-brace 1st Row 1st Column partial-differential Subscript t t Baseline u minus normal upper Delta u plus u 2nd Column a m p semicolon equals StartAbsoluteValue u EndAbsoluteValue Superscript StartFraction 4 Over d minus 2 EndFraction Baseline u comma 2nd Row 1st Column u left-parenthesis 0 comma x right-parenthesis 2nd Column a m p semicolon colon-equal f 0 left-parenthesis x right-parenthesis comma 3rd Row 1st Column partial-differential Subscript t Baseline u left-parenthesis 0 comma x right-parenthesis 2nd Column a m p semicolon colon-equal f 1 left-parenthesis x right-parenthesis EndLayout\\\"> <mml:semantics> <mml:mrow> <mml:mo>{</mml:mo> <mml:mtable columnalign=\\\"left left\\\" rowspacing=\\\".2em\\\" columnspacing=\\\"1em\\\" displaystyle=\\\"false\\\"> <mml:mtr> <mml:mtd> <mml:msub> <mml:mi mathvariant=\\\"normal\\\">∂</mml:mi> <mml:mrow> <mml:mi>t</mml:mi> <mml:mi>t</mml:mi> </mml:mrow> </mml:msub> <mml:mi>u</mml:mi> <mml:mo>−</mml:mo> <mml:mi mathvariant=\\\"normal\\\">Δ</mml:mi> <mml:mi>u</mml:mi> <mml:mo>+</mml:mo> <mml:mi>u</mml:mi> </mml:mtd> <mml:mtd> <mml:mi>a</mml:mi> <mml:mi>m</mml:mi> <mml:mi>p</mml:mi> <mml:mo>;</mml:mo> <mml:mo>=</mml:mo> <mml:mrow> <mml:mo stretchy=\\\"false\\\">|</mml:mo> </mml:mrow> <mml:mi>u</mml:mi> <mml:msup> <mml:mrow> <mml:mo stretchy=\\\"false\\\">|</mml:mo> </mml:mrow> <mml:mrow> <mml:mfrac> <mml:mn>4</mml:mn> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>−</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:mfrac> </mml:mrow> </mml:msup> <mml:mi>u</mml:mi> <mml:mo>,</mml:mo> </mml:mtd> </mml:mtr> <mml:mtr> <mml:mtd> <mml:mi>u</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mtd> <mml:mtd> <mml:mi>a</mml:mi> <mml:mi>m</mml:mi> <mml:mi>p</mml:mi> <mml:mo>;</mml:mo> <mml:mo>≔</mml:mo> <mml:msub> <mml:mi>f</mml:mi> <mml:mrow> <mml:mn>0</mml:mn> </mml:mrow> </mml:msub> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>,</mml:mo> </mml:mtd> </mml:mtr> <mml:mtr> <mml:mtd> <mml:msub> <mml:mi mathvariant=\\\"normal\\\">∂</mml:mi> <mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> </mml:msub> <mml:mi>u</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mtd> <mml:mtd> <mml:mi>a</mml:mi> <mml:mi>m</mml:mi> <mml:mi>p</mml:mi> <mml:mo>;</mml:mo> <mml:mo>≔</mml:mo> <mml:msub> <mml:mi>f</mml:mi> <mml:mrow> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mtd> </mml:mtr> </mml:mtable> <mml:mo fence=\\\"true\\\" stretchy=\\\"true\\\" symmetric=\\\"true\\\"/> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\begin{equation*} \\\\begin {cases} \\\\partial _{tt} u - \\\\Delta u + u &amp; = |u|^{\\\\frac {4}{d-2}} u, \\\\\\\\ u(0,x) &amp; ≔f_{0}(x), \\\\\\\\ \\\\partial _{t} u(0,x) &amp; ≔f_{1}(x) \\\\end{cases} \\\\end{equation*}</mml:annotation> </mml:semantics> </mml:math> </disp-formula> with data <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis f 0 comma f 1 right-parenthesis element-of script upper H colon-equal upper H Superscript 1 Baseline times upper L squared\\\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msub> <mml:mi>f</mml:mi> <mml:mrow> <mml:mn>0</mml:mn> </mml:mrow> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>f</mml:mi> <mml:mrow> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>∈</mml:mo> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">H</mml:mi> </mml:mrow> <mml:mo>≔</mml:mo> <mml:msup> <mml:mi>H</mml:mi> <mml:mrow> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mo>×</mml:mo> <mml:msup> <mml:mi>L</mml:mi> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">(f_{0},f_{1}) \\\\in \\\\mathcal {H} ≔H^{1} \\\\times L^{2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We describe the global dynamics of real-valued solutions of which the energy is slightly larger than that of the ground states’. We classify the flows of the solutions that are ejected from a small neighborhood of the ground states or that are away from them. The classification relies upon a modification of the arguments of Payne and Sattinger [Israel J. Math. 22 (1975), pp. 273–303] to prove blow-up in finite time, and a modification of the arguments of Ibrahim, Masmoudi, and Nakanishi [Anal. PDE 4 (2011), pp. 405–460], Kenig and Merle [Invent. Math. 166 (2006), pp. 645–675; Acta Math. 201 (2008), pp. 147–212], and Krieger, Nakanishi, and Schlag [Discrete Contin. Dyn. Syst. 33 (2013), pp. 2423–2450] to prove scattering as <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"t right-arrow plus-or-minus normal infinity\\\"> <mml:semantics> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo stretchy=\\\"false\\\">→</mml:mo> <mml:mo>±</mml:mo> <mml:mi mathvariant=\\\"normal\\\">∞</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">t \\\\rightarrow \\\\pm \\\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. There are three main differences between this paper and that of Krieger, Nakanishi, and Schlag [Discrete Contin. Dyn. Syst. 33 (2013), pp. 2423–2450]. The first one is the lack of scaling symmetry. The second one appears in the proof of the ejection lemma: one has to control the mass in the ejection process. The third one appears in the proof of the one-pass lemma: in the worst scenario, one cannot use the equipartition of energy and therefore one has to prove a decay estimate which allows to use an argument of Bourgain [J. Amer. Math. Soc. 12 (1999), pp. 145–171].</p>\",\"PeriodicalId\":23209,\"journal\":{\"name\":\"Transactions of the American Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/tran/9158\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/tran/9158","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

考虑在维度 d∈ { 3 , 4 , 5 } d \in \{ 3,4,5 \} 中的聚焦能量临界克莱因-戈登方程。 { ∂ t t u - Δ u + u a m p ; = | u | 4 d - 2 u , u ( 0 , x ) a m p ; ∂ f 0 ( x ) , ∂ t u ( 0 , x ) a m p ; ∂ f 1 ( x ) \begin{equation*}\开始\partial _{tt} u - \Delta u + u & = |u|^{frac {4}{d-2}} u, \ u(0,x) & ≔f_{0}(x), \ \partial _{t} u(0,x) & ≔f_{1}(x) \end{cases}\end{equation*} with data ( f 0 , f 1 ) ∈ H ≔ H 1 × L 2 (f_{0},f_{1}) \in \mathcal {H} ≔H^{1}\乘以 L^{2} 。我们描述了能量略大于基态的实值解的全局动力学。我们对从基态的小邻域喷出或远离基态的解的流动进行了分类。这种分类依赖于对 Payne 和 Sattinger [Israel J. Math. 22 (1975),pp. 273-303] 证明在有限时间内炸毁的论证的修改,以及对 Ibrahim、Masmoudi 和 Nakanishi [Anal. PDE 4 (2011),pp.405-460], Kenig 和 Merle [Invent. Math. 166 (2006), pp.本文与 Krieger、Nakanishi 和 Schlag [Discrete Contin. Dyn. Syst.第一个是缺乏缩放对称性。第二个问题出现在弹射定理的证明中:我们必须控制弹射过程中的质量。第三点出现在单程稃的证明中:在最糟糕的情况下,我们不能使用能量等分,因此我们必须证明一种衰变估计,从而可以使用布尔甘的论证[J. Amer. Math. Soc. 12 (1999),第 145-171 页]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global dynamics above the ground state energy for the energy-critical Klein-Gordon equation

Consider the focusing energy-critical Klein-Gordon equation in dimension d { 3 , 4 , 5 } d \in \{ 3,4,5 \} { t t u Δ u + u a m p ; = | u | 4 d 2 u , u ( 0 , x ) a m p ; f 0 ( x ) , t u ( 0 , x ) a m p ; f 1 ( x ) \begin{equation*} \begin {cases} \partial _{tt} u - \Delta u + u & = |u|^{\frac {4}{d-2}} u, \\ u(0,x) & ≔f_{0}(x), \\ \partial _{t} u(0,x) & ≔f_{1}(x) \end{cases} \end{equation*} with data ( f 0 , f 1 ) H H 1 × L 2 (f_{0},f_{1}) \in \mathcal {H} ≔H^{1} \times L^{2} . We describe the global dynamics of real-valued solutions of which the energy is slightly larger than that of the ground states’. We classify the flows of the solutions that are ejected from a small neighborhood of the ground states or that are away from them. The classification relies upon a modification of the arguments of Payne and Sattinger [Israel J. Math. 22 (1975), pp. 273–303] to prove blow-up in finite time, and a modification of the arguments of Ibrahim, Masmoudi, and Nakanishi [Anal. PDE 4 (2011), pp. 405–460], Kenig and Merle [Invent. Math. 166 (2006), pp. 645–675; Acta Math. 201 (2008), pp. 147–212], and Krieger, Nakanishi, and Schlag [Discrete Contin. Dyn. Syst. 33 (2013), pp. 2423–2450] to prove scattering as t ± t \rightarrow \pm \infty . There are three main differences between this paper and that of Krieger, Nakanishi, and Schlag [Discrete Contin. Dyn. Syst. 33 (2013), pp. 2423–2450]. The first one is the lack of scaling symmetry. The second one appears in the proof of the ejection lemma: one has to control the mass in the ejection process. The third one appears in the proof of the one-pass lemma: in the worst scenario, one cannot use the equipartition of energy and therefore one has to prove a decay estimate which allows to use an argument of Bourgain [J. Amer. Math. Soc. 12 (1999), pp. 145–171].

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
7.70%
发文量
171
审稿时长
3-6 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles in all areas of pure and applied mathematics. To be published in the Transactions, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Papers of less than 15 printed pages that meet the above criteria should be submitted to the Proceedings of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信