求助PDF
{"title":"基于强局部 Dirichlet 形式的 (1,p)$(1,p)$-Sobolev 空间","authors":"Kazuhiro Kuwae","doi":"10.1002/mana.202400025","DOIUrl":null,"url":null,"abstract":"<p>In the framework of quasi-regular strongly local Dirichlet form <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>E</mi>\n <mo>,</mo>\n <mi>D</mi>\n <mo>(</mo>\n <mi>E</mi>\n <mo>)</mo>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\mathcal {E},D(\\mathcal {E}))$</annotation>\n </semantics></math> on <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>L</mi>\n <mn>2</mn>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>;</mo>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^2(X;\\mathfrak {m})$</annotation>\n </semantics></math> admitting minimal <span></span><math>\n <semantics>\n <mi>E</mi>\n <annotation>$\\mathcal {E}$</annotation>\n </semantics></math>-dominant measure <span></span><math>\n <semantics>\n <mi>μ</mi>\n <annotation>$\\mu$</annotation>\n </semantics></math>, we construct a natural <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-energy functional <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>E</mi>\n <mrow>\n <mspace></mspace>\n <mi>p</mi>\n </mrow>\n </msup>\n <mo>,</mo>\n <mi>D</mi>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>E</mi>\n <mrow>\n <mspace></mspace>\n <mi>p</mi>\n </mrow>\n </msup>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\mathcal {E}^{\\,p},D(\\mathcal {E}^{\\,p}))$</annotation>\n </semantics></math> on <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>L</mi>\n <mi>p</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>;</mo>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^p(X;\\mathfrak {m})$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(1,p)$</annotation>\n </semantics></math>-Sobolev space <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>H</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n <mo>,</mo>\n <mo>∥</mo>\n <mo>·</mo>\n <msub>\n <mo>∥</mo>\n <msup>\n <mi>H</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n </msup>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$(H^{1,p}(X),\\Vert \\cdot \\Vert _{H^{1,p}})$</annotation>\n </semantics></math> for <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>∈</mo>\n <mo>]</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mo>+</mo>\n <mi>∞</mi>\n <mo>[</mo>\n </mrow>\n <annotation>$p\\in]1,+\\infty [$</annotation>\n </semantics></math>. In this paper, we establish the Clarkson-type inequality for <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>H</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n <mo>,</mo>\n <mo>∥</mo>\n <mo>·</mo>\n <msub>\n <mo>∥</mo>\n <msup>\n <mi>H</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n </msup>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$(H^{1,p}(X),\\Vert \\cdot \\Vert _{H^{1,p}})$</annotation>\n </semantics></math>. As a consequence, <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>H</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n <mo>,</mo>\n <mo>∥</mo>\n <mo>·</mo>\n <msub>\n <mo>∥</mo>\n <msup>\n <mi>H</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n </msup>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$(H^{1,p}(X),\\Vert \\cdot \\Vert _{H^{1,p}})$</annotation>\n </semantics></math> is a uniformly convex Banach space, hence it is reflexive. Based on the reflexivity of <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>H</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n <mo>,</mo>\n <mo>∥</mo>\n <mo>·</mo>\n <msub>\n <mo>∥</mo>\n <msup>\n <mi>H</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n </msup>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$(H^{1,p}(X),\\Vert \\cdot \\Vert _{H^{1,p}})$</annotation>\n </semantics></math>, we prove that (generalized) normal contraction operates on <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>E</mi>\n <mrow>\n <mspace></mspace>\n <mi>p</mi>\n </mrow>\n </msup>\n <mo>,</mo>\n <mi>D</mi>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>E</mi>\n <mrow>\n <mspace></mspace>\n <mi>p</mi>\n </mrow>\n </msup>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\mathcal {E}^{\\,p},D(\\mathcal {E}^{\\,p}))$</annotation>\n </semantics></math>, which has been shown in the case of various concrete settings, but has not been proved for such a general framework. Moreover, we prove that <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(1,p)$</annotation>\n </semantics></math>-capacity <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Cap</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>A</mi>\n <mo>)</mo>\n </mrow>\n <mo><</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>${\\rm Cap}_{1,p}(A)&lt;\\infty$</annotation>\n </semantics></math> for open set <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> admits an equilibrium potential <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>e</mi>\n <mi>A</mi>\n </msub>\n <mo>∈</mo>\n <mi>D</mi>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>E</mi>\n <mrow>\n <mspace></mspace>\n <mi>p</mi>\n </mrow>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$e_A\\in D(\\mathcal {E}^{\\,p})$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mn>0</mn>\n <mo>≤</mo>\n <msub>\n <mi>e</mi>\n <mi>A</mi>\n </msub>\n <mo>≤</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$0\\le e_A\\le 1$</annotation>\n </semantics></math> <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$\\mathfrak {m}$</annotation>\n </semantics></math>-a.e. and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>e</mi>\n <mi>A</mi>\n </msub>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$e_A=1$</annotation>\n </semantics></math> <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$\\mathfrak {m}$</annotation>\n </semantics></math>-a.e. on <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"(\\n 1\\n ,\\n p\\n )\\n \\n $(1,p)$\\n -Sobolev spaces based on strongly local Dirichlet forms\",\"authors\":\"Kazuhiro Kuwae\",\"doi\":\"10.1002/mana.202400025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the framework of quasi-regular strongly local Dirichlet form <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>E</mi>\\n <mo>,</mo>\\n <mi>D</mi>\\n <mo>(</mo>\\n <mi>E</mi>\\n <mo>)</mo>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(\\\\mathcal {E},D(\\\\mathcal {E}))$</annotation>\\n </semantics></math> on <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>L</mi>\\n <mn>2</mn>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>;</mo>\\n <mi>m</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$L^2(X;\\\\mathfrak {m})$</annotation>\\n </semantics></math> admitting minimal <span></span><math>\\n <semantics>\\n <mi>E</mi>\\n <annotation>$\\\\mathcal {E}$</annotation>\\n </semantics></math>-dominant measure <span></span><math>\\n <semantics>\\n <mi>μ</mi>\\n <annotation>$\\\\mu$</annotation>\\n </semantics></math>, we construct a natural <span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math>-energy functional <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>E</mi>\\n <mrow>\\n <mspace></mspace>\\n <mi>p</mi>\\n </mrow>\\n </msup>\\n <mo>,</mo>\\n <mi>D</mi>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>E</mi>\\n <mrow>\\n <mspace></mspace>\\n <mi>p</mi>\\n </mrow>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(\\\\mathcal {E}^{\\\\,p},D(\\\\mathcal {E}^{\\\\,p}))$</annotation>\\n </semantics></math> on <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>L</mi>\\n <mi>p</mi>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>;</mo>\\n <mi>m</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$L^p(X;\\\\mathfrak {m})$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mi>p</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(1,p)$</annotation>\\n </semantics></math>-Sobolev space <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>H</mi>\\n <mrow>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mi>p</mi>\\n </mrow>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>,</mo>\\n <mo>∥</mo>\\n <mo>·</mo>\\n <msub>\\n <mo>∥</mo>\\n <msup>\\n <mi>H</mi>\\n <mrow>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mi>p</mi>\\n </mrow>\\n </msup>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(H^{1,p}(X),\\\\Vert \\\\cdot \\\\Vert _{H^{1,p}})$</annotation>\\n </semantics></math> for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>p</mi>\\n <mo>∈</mo>\\n <mo>]</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mo>+</mo>\\n <mi>∞</mi>\\n <mo>[</mo>\\n </mrow>\\n <annotation>$p\\\\in]1,+\\\\infty [$</annotation>\\n </semantics></math>. In this paper, we establish the Clarkson-type inequality for <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>H</mi>\\n <mrow>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mi>p</mi>\\n </mrow>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>,</mo>\\n <mo>∥</mo>\\n <mo>·</mo>\\n <msub>\\n <mo>∥</mo>\\n <msup>\\n <mi>H</mi>\\n <mrow>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mi>p</mi>\\n </mrow>\\n </msup>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(H^{1,p}(X),\\\\Vert \\\\cdot \\\\Vert _{H^{1,p}})$</annotation>\\n </semantics></math>. As a consequence, <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>H</mi>\\n <mrow>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mi>p</mi>\\n </mrow>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>,</mo>\\n <mo>∥</mo>\\n <mo>·</mo>\\n <msub>\\n <mo>∥</mo>\\n <msup>\\n <mi>H</mi>\\n <mrow>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mi>p</mi>\\n </mrow>\\n </msup>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(H^{1,p}(X),\\\\Vert \\\\cdot \\\\Vert _{H^{1,p}})$</annotation>\\n </semantics></math> is a uniformly convex Banach space, hence it is reflexive. Based on the reflexivity of <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>H</mi>\\n <mrow>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mi>p</mi>\\n </mrow>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>,</mo>\\n <mo>∥</mo>\\n <mo>·</mo>\\n <msub>\\n <mo>∥</mo>\\n <msup>\\n <mi>H</mi>\\n <mrow>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mi>p</mi>\\n </mrow>\\n </msup>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(H^{1,p}(X),\\\\Vert \\\\cdot \\\\Vert _{H^{1,p}})$</annotation>\\n </semantics></math>, we prove that (generalized) normal contraction operates on <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>E</mi>\\n <mrow>\\n <mspace></mspace>\\n <mi>p</mi>\\n </mrow>\\n </msup>\\n <mo>,</mo>\\n <mi>D</mi>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>E</mi>\\n <mrow>\\n <mspace></mspace>\\n <mi>p</mi>\\n </mrow>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(\\\\mathcal {E}^{\\\\,p},D(\\\\mathcal {E}^{\\\\,p}))$</annotation>\\n </semantics></math>, which has been shown in the case of various concrete settings, but has not been proved for such a general framework. Moreover, we prove that <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mi>p</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(1,p)$</annotation>\\n </semantics></math>-capacity <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>Cap</mi>\\n <mrow>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mi>p</mi>\\n </mrow>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>A</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo><</mo>\\n <mi>∞</mi>\\n </mrow>\\n <annotation>${\\\\rm Cap}_{1,p}(A)&lt;\\\\infty$</annotation>\\n </semantics></math> for open set <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$A$</annotation>\\n </semantics></math> admits an equilibrium potential <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>e</mi>\\n <mi>A</mi>\\n </msub>\\n <mo>∈</mo>\\n <mi>D</mi>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>E</mi>\\n <mrow>\\n <mspace></mspace>\\n <mi>p</mi>\\n </mrow>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$e_A\\\\in D(\\\\mathcal {E}^{\\\\,p})$</annotation>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>0</mn>\\n <mo>≤</mo>\\n <msub>\\n <mi>e</mi>\\n <mi>A</mi>\\n </msub>\\n <mo>≤</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$0\\\\le e_A\\\\le 1$</annotation>\\n </semantics></math> <span></span><math>\\n <semantics>\\n <mi>m</mi>\\n <annotation>$\\\\mathfrak {m}$</annotation>\\n </semantics></math>-a.e. and <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>e</mi>\\n <mi>A</mi>\\n </msub>\\n <mo>=</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$e_A=1$</annotation>\\n </semantics></math> <span></span><math>\\n <semantics>\\n <mi>m</mi>\\n <annotation>$\\\\mathfrak {m}$</annotation>\\n </semantics></math>-a.e. on <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$A$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
引用
批量引用
(
1
,
p
)
$(1,p)$
-Sobolev spaces based on strongly local Dirichlet forms
In the framework of quasi-regular strongly local Dirichlet form
(
E
,
D
(
E
)
)
$(\mathcal {E},D(\mathcal {E}))$
on
L
2
(
X
;
m
)
$L^2(X;\mathfrak {m})$
admitting minimal
E
$\mathcal {E}$
-dominant measure
μ
$\mu$
, we construct a natural
p
$p$
-energy functional
(
E
p
,
D
(
E
p
)
)
$(\mathcal {E}^{\,p},D(\mathcal {E}^{\,p}))$
on
L
p
(
X
;
m
)
$L^p(X;\mathfrak {m})$
and
(
1
,
p
)
$(1,p)$
-Sobolev space
(
H
1
,
p
(
X
)
,
∥
·
∥
H
1
,
p
)
$(H^{1,p}(X),\Vert \cdot \Vert _{H^{1,p}})$
for
p
∈
]
1
,
+
∞
[
$p\in]1,+\infty [$
. In this paper, we establish the Clarkson-type inequality for
(
H
1
,
p
(
X
)
,
∥
·
∥
H
1
,
p
)
$(H^{1,p}(X),\Vert \cdot \Vert _{H^{1,p}})$
. As a consequence,
(
H
1
,
p
(
X
)
,
∥
·
∥
H
1
,
p
)
$(H^{1,p}(X),\Vert \cdot \Vert _{H^{1,p}})$
is a uniformly convex Banach space, hence it is reflexive. Based on the reflexivity of
(
H
1
,
p
(
X
)
,
∥
·
∥
H
1
,
p
)
$(H^{1,p}(X),\Vert \cdot \Vert _{H^{1,p}})$
, we prove that (generalized) normal contraction operates on
(
E
p
,
D
(
E
p
)
)
$(\mathcal {E}^{\,p},D(\mathcal {E}^{\,p}))$
, which has been shown in the case of various concrete settings, but has not been proved for such a general framework. Moreover, we prove that
(
1
,
p
)
$(1,p)$
-capacity
Cap
1
,
p
(
A
)
<
∞
${\rm Cap}_{1,p}(A)<\infty$
for open set
A
$A$
admits an equilibrium potential
e
A
∈
D
(
E
p
)
$e_A\in D(\mathcal {E}^{\,p})$
with
0
≤
e
A
≤
1
$0\le e_A\le 1$
m
$\mathfrak {m}$
-a.e. and
e
A
=
1
$e_A=1$
m
$\mathfrak {m}$
-a.e. on
A
$A$
.