基于强局部 Dirichlet 形式的 (1,p)$(1,p)$-Sobolev 空间

Pub Date : 2024-07-29 DOI:10.1002/mana.202400025
Kazuhiro Kuwae
{"title":"基于强局部 Dirichlet 形式的 (1,p)$(1,p)$-Sobolev 空间","authors":"Kazuhiro Kuwae","doi":"10.1002/mana.202400025","DOIUrl":null,"url":null,"abstract":"<p>In the framework of quasi-regular strongly local Dirichlet form <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>E</mi>\n <mo>,</mo>\n <mi>D</mi>\n <mo>(</mo>\n <mi>E</mi>\n <mo>)</mo>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\mathcal {E},D(\\mathcal {E}))$</annotation>\n </semantics></math> on <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>L</mi>\n <mn>2</mn>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>;</mo>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^2(X;\\mathfrak {m})$</annotation>\n </semantics></math> admitting minimal <span></span><math>\n <semantics>\n <mi>E</mi>\n <annotation>$\\mathcal {E}$</annotation>\n </semantics></math>-dominant measure <span></span><math>\n <semantics>\n <mi>μ</mi>\n <annotation>$\\mu$</annotation>\n </semantics></math>, we construct a natural <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-energy functional <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>E</mi>\n <mrow>\n <mspace></mspace>\n <mi>p</mi>\n </mrow>\n </msup>\n <mo>,</mo>\n <mi>D</mi>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>E</mi>\n <mrow>\n <mspace></mspace>\n <mi>p</mi>\n </mrow>\n </msup>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\mathcal {E}^{\\,p},D(\\mathcal {E}^{\\,p}))$</annotation>\n </semantics></math> on <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>L</mi>\n <mi>p</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>;</mo>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^p(X;\\mathfrak {m})$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(1,p)$</annotation>\n </semantics></math>-Sobolev space <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>H</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n <mo>,</mo>\n <mo>∥</mo>\n <mo>·</mo>\n <msub>\n <mo>∥</mo>\n <msup>\n <mi>H</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n </msup>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$(H^{1,p}(X),\\Vert \\cdot \\Vert _{H^{1,p}})$</annotation>\n </semantics></math> for <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>∈</mo>\n <mo>]</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mo>+</mo>\n <mi>∞</mi>\n <mo>[</mo>\n </mrow>\n <annotation>$p\\in]1,+\\infty [$</annotation>\n </semantics></math>. In this paper, we establish the Clarkson-type inequality for <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>H</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n <mo>,</mo>\n <mo>∥</mo>\n <mo>·</mo>\n <msub>\n <mo>∥</mo>\n <msup>\n <mi>H</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n </msup>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$(H^{1,p}(X),\\Vert \\cdot \\Vert _{H^{1,p}})$</annotation>\n </semantics></math>. As a consequence, <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>H</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n <mo>,</mo>\n <mo>∥</mo>\n <mo>·</mo>\n <msub>\n <mo>∥</mo>\n <msup>\n <mi>H</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n </msup>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$(H^{1,p}(X),\\Vert \\cdot \\Vert _{H^{1,p}})$</annotation>\n </semantics></math> is a uniformly convex Banach space, hence it is reflexive. Based on the reflexivity of <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>H</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n <mo>,</mo>\n <mo>∥</mo>\n <mo>·</mo>\n <msub>\n <mo>∥</mo>\n <msup>\n <mi>H</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n </msup>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$(H^{1,p}(X),\\Vert \\cdot \\Vert _{H^{1,p}})$</annotation>\n </semantics></math>, we prove that (generalized) normal contraction operates on <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>E</mi>\n <mrow>\n <mspace></mspace>\n <mi>p</mi>\n </mrow>\n </msup>\n <mo>,</mo>\n <mi>D</mi>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>E</mi>\n <mrow>\n <mspace></mspace>\n <mi>p</mi>\n </mrow>\n </msup>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\mathcal {E}^{\\,p},D(\\mathcal {E}^{\\,p}))$</annotation>\n </semantics></math>, which has been shown in the case of various concrete settings, but has not been proved for such a general framework. Moreover, we prove that <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(1,p)$</annotation>\n </semantics></math>-capacity <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Cap</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>A</mi>\n <mo>)</mo>\n </mrow>\n <mo>&lt;</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>${\\rm Cap}_{1,p}(A)&amp;lt;\\infty$</annotation>\n </semantics></math> for open set <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> admits an equilibrium potential <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>e</mi>\n <mi>A</mi>\n </msub>\n <mo>∈</mo>\n <mi>D</mi>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>E</mi>\n <mrow>\n <mspace></mspace>\n <mi>p</mi>\n </mrow>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$e_A\\in D(\\mathcal {E}^{\\,p})$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mn>0</mn>\n <mo>≤</mo>\n <msub>\n <mi>e</mi>\n <mi>A</mi>\n </msub>\n <mo>≤</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$0\\le e_A\\le 1$</annotation>\n </semantics></math> <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$\\mathfrak {m}$</annotation>\n </semantics></math>-a.e. and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>e</mi>\n <mi>A</mi>\n </msub>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$e_A=1$</annotation>\n </semantics></math> <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$\\mathfrak {m}$</annotation>\n </semantics></math>-a.e. on <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"(\\n 1\\n ,\\n p\\n )\\n \\n $(1,p)$\\n -Sobolev spaces based on strongly local Dirichlet forms\",\"authors\":\"Kazuhiro Kuwae\",\"doi\":\"10.1002/mana.202400025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the framework of quasi-regular strongly local Dirichlet form <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>E</mi>\\n <mo>,</mo>\\n <mi>D</mi>\\n <mo>(</mo>\\n <mi>E</mi>\\n <mo>)</mo>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(\\\\mathcal {E},D(\\\\mathcal {E}))$</annotation>\\n </semantics></math> on <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>L</mi>\\n <mn>2</mn>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>;</mo>\\n <mi>m</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$L^2(X;\\\\mathfrak {m})$</annotation>\\n </semantics></math> admitting minimal <span></span><math>\\n <semantics>\\n <mi>E</mi>\\n <annotation>$\\\\mathcal {E}$</annotation>\\n </semantics></math>-dominant measure <span></span><math>\\n <semantics>\\n <mi>μ</mi>\\n <annotation>$\\\\mu$</annotation>\\n </semantics></math>, we construct a natural <span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math>-energy functional <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>E</mi>\\n <mrow>\\n <mspace></mspace>\\n <mi>p</mi>\\n </mrow>\\n </msup>\\n <mo>,</mo>\\n <mi>D</mi>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>E</mi>\\n <mrow>\\n <mspace></mspace>\\n <mi>p</mi>\\n </mrow>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(\\\\mathcal {E}^{\\\\,p},D(\\\\mathcal {E}^{\\\\,p}))$</annotation>\\n </semantics></math> on <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>L</mi>\\n <mi>p</mi>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>;</mo>\\n <mi>m</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$L^p(X;\\\\mathfrak {m})$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mi>p</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(1,p)$</annotation>\\n </semantics></math>-Sobolev space <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>H</mi>\\n <mrow>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mi>p</mi>\\n </mrow>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>,</mo>\\n <mo>∥</mo>\\n <mo>·</mo>\\n <msub>\\n <mo>∥</mo>\\n <msup>\\n <mi>H</mi>\\n <mrow>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mi>p</mi>\\n </mrow>\\n </msup>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(H^{1,p}(X),\\\\Vert \\\\cdot \\\\Vert _{H^{1,p}})$</annotation>\\n </semantics></math> for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>p</mi>\\n <mo>∈</mo>\\n <mo>]</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mo>+</mo>\\n <mi>∞</mi>\\n <mo>[</mo>\\n </mrow>\\n <annotation>$p\\\\in]1,+\\\\infty [$</annotation>\\n </semantics></math>. In this paper, we establish the Clarkson-type inequality for <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>H</mi>\\n <mrow>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mi>p</mi>\\n </mrow>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>,</mo>\\n <mo>∥</mo>\\n <mo>·</mo>\\n <msub>\\n <mo>∥</mo>\\n <msup>\\n <mi>H</mi>\\n <mrow>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mi>p</mi>\\n </mrow>\\n </msup>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(H^{1,p}(X),\\\\Vert \\\\cdot \\\\Vert _{H^{1,p}})$</annotation>\\n </semantics></math>. As a consequence, <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>H</mi>\\n <mrow>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mi>p</mi>\\n </mrow>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>,</mo>\\n <mo>∥</mo>\\n <mo>·</mo>\\n <msub>\\n <mo>∥</mo>\\n <msup>\\n <mi>H</mi>\\n <mrow>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mi>p</mi>\\n </mrow>\\n </msup>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(H^{1,p}(X),\\\\Vert \\\\cdot \\\\Vert _{H^{1,p}})$</annotation>\\n </semantics></math> is a uniformly convex Banach space, hence it is reflexive. Based on the reflexivity of <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>H</mi>\\n <mrow>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mi>p</mi>\\n </mrow>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>,</mo>\\n <mo>∥</mo>\\n <mo>·</mo>\\n <msub>\\n <mo>∥</mo>\\n <msup>\\n <mi>H</mi>\\n <mrow>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mi>p</mi>\\n </mrow>\\n </msup>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(H^{1,p}(X),\\\\Vert \\\\cdot \\\\Vert _{H^{1,p}})$</annotation>\\n </semantics></math>, we prove that (generalized) normal contraction operates on <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>E</mi>\\n <mrow>\\n <mspace></mspace>\\n <mi>p</mi>\\n </mrow>\\n </msup>\\n <mo>,</mo>\\n <mi>D</mi>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>E</mi>\\n <mrow>\\n <mspace></mspace>\\n <mi>p</mi>\\n </mrow>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(\\\\mathcal {E}^{\\\\,p},D(\\\\mathcal {E}^{\\\\,p}))$</annotation>\\n </semantics></math>, which has been shown in the case of various concrete settings, but has not been proved for such a general framework. Moreover, we prove that <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mi>p</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(1,p)$</annotation>\\n </semantics></math>-capacity <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>Cap</mi>\\n <mrow>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mi>p</mi>\\n </mrow>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>A</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>&lt;</mo>\\n <mi>∞</mi>\\n </mrow>\\n <annotation>${\\\\rm Cap}_{1,p}(A)&amp;lt;\\\\infty$</annotation>\\n </semantics></math> for open set <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$A$</annotation>\\n </semantics></math> admits an equilibrium potential <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>e</mi>\\n <mi>A</mi>\\n </msub>\\n <mo>∈</mo>\\n <mi>D</mi>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>E</mi>\\n <mrow>\\n <mspace></mspace>\\n <mi>p</mi>\\n </mrow>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$e_A\\\\in D(\\\\mathcal {E}^{\\\\,p})$</annotation>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>0</mn>\\n <mo>≤</mo>\\n <msub>\\n <mi>e</mi>\\n <mi>A</mi>\\n </msub>\\n <mo>≤</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$0\\\\le e_A\\\\le 1$</annotation>\\n </semantics></math> <span></span><math>\\n <semantics>\\n <mi>m</mi>\\n <annotation>$\\\\mathfrak {m}$</annotation>\\n </semantics></math>-a.e. and <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>e</mi>\\n <mi>A</mi>\\n </msub>\\n <mo>=</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$e_A=1$</annotation>\\n </semantics></math> <span></span><math>\\n <semantics>\\n <mi>m</mi>\\n <annotation>$\\\\mathfrak {m}$</annotation>\\n </semantics></math>-a.e. on <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$A$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在准规则强局部 Dirichlet 形式的框架内,我们在容许最小-主导度量的 上和-Sobolev 空间中为 .在本文中,我们为 .因此, 是一个均匀凸的巴拿赫空间,因此它是反身的。基于Ⅳ的反身性,我们证明了(广义)法向收缩作用于Ⅳ,这已经在各种具体环境中得到证明,但还没有在这样一个一般框架中得到证明。此外,我们还证明了开集的-容量在-a.e.和-a.e.上具有均衡势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
( 1 , p ) $(1,p)$ -Sobolev spaces based on strongly local Dirichlet forms

In the framework of quasi-regular strongly local Dirichlet form ( E , D ( E ) ) $(\mathcal {E},D(\mathcal {E}))$ on L 2 ( X ; m ) $L^2(X;\mathfrak {m})$ admitting minimal E $\mathcal {E}$ -dominant measure μ $\mu$ , we construct a natural p $p$ -energy functional ( E p , D ( E p ) ) $(\mathcal {E}^{\,p},D(\mathcal {E}^{\,p}))$ on L p ( X ; m ) $L^p(X;\mathfrak {m})$ and ( 1 , p ) $(1,p)$ -Sobolev space ( H 1 , p ( X ) , · H 1 , p ) $(H^{1,p}(X),\Vert \cdot \Vert _{H^{1,p}})$ for p ] 1 , + [ $p\in]1,+\infty [$ . In this paper, we establish the Clarkson-type inequality for ( H 1 , p ( X ) , · H 1 , p ) $(H^{1,p}(X),\Vert \cdot \Vert _{H^{1,p}})$ . As a consequence, ( H 1 , p ( X ) , · H 1 , p ) $(H^{1,p}(X),\Vert \cdot \Vert _{H^{1,p}})$ is a uniformly convex Banach space, hence it is reflexive. Based on the reflexivity of ( H 1 , p ( X ) , · H 1 , p ) $(H^{1,p}(X),\Vert \cdot \Vert _{H^{1,p}})$ , we prove that (generalized) normal contraction operates on ( E p , D ( E p ) ) $(\mathcal {E}^{\,p},D(\mathcal {E}^{\,p}))$ , which has been shown in the case of various concrete settings, but has not been proved for such a general framework. Moreover, we prove that ( 1 , p ) $(1,p)$ -capacity Cap 1 , p ( A ) < ${\rm Cap}_{1,p}(A)&lt;\infty$ for open set A $A$ admits an equilibrium potential e A D ( E p ) $e_A\in D(\mathcal {E}^{\,p})$ with 0 e A 1 $0\le e_A\le 1$ m $\mathfrak {m}$ -a.e. and e A = 1 $e_A=1$ m $\mathfrak {m}$ -a.e. on A $A$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信