论 ℓ1$\ell _1$ 上有界型对称解析函数代数的谱

Pub Date : 2024-07-29 DOI:10.1002/mana.202300415
Iryna Chernega, Pablo Galindo, Andriy Zagorodnyuk
{"title":"论 ℓ1$\\ell _1$ 上有界型对称解析函数代数的谱","authors":"Iryna Chernega,&nbsp;Pablo Galindo,&nbsp;Andriy Zagorodnyuk","doi":"10.1002/mana.202300415","DOIUrl":null,"url":null,"abstract":"<p>We obtain a complete description of the spectrum of the Fréchet algebra of symmetric analytic functions bounded on balls on the sequence space <span></span><math>\n <semantics>\n <msub>\n <mi>ℓ</mi>\n <mn>1</mn>\n </msub>\n <annotation>$\\ell _1$</annotation>\n </semantics></math>. This is achieved after proving that on the analogous algebra for <span></span><math>\n <semantics>\n <msub>\n <mi>ℓ</mi>\n <mi>p</mi>\n </msub>\n <annotation>$\\ell _p$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>≤</mo>\n <mi>p</mi>\n <mo>&lt;</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$1\\le p &amp;lt;\\infty$</annotation>\n </semantics></math>, the radius function of any evaluation homomorphism <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>δ</mi>\n <mi>x</mi>\n </msub>\n <mo>,</mo>\n <mspace></mspace>\n <mi>x</mi>\n <mo>∈</mo>\n <msub>\n <mi>ℓ</mi>\n <mi>p</mi>\n </msub>\n </mrow>\n <annotation>$\\delta _x, \\nobreakspace x \\in \\ell _p$</annotation>\n </semantics></math>, coincides with the norm of <span></span><math>\n <semantics>\n <mi>x</mi>\n <annotation>$x$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the spectrum of the algebra of bounded-type symmetric analytic functions on \\n \\n \\n ℓ\\n 1\\n \\n $\\\\ell _1$\",\"authors\":\"Iryna Chernega,&nbsp;Pablo Galindo,&nbsp;Andriy Zagorodnyuk\",\"doi\":\"10.1002/mana.202300415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We obtain a complete description of the spectrum of the Fréchet algebra of symmetric analytic functions bounded on balls on the sequence space <span></span><math>\\n <semantics>\\n <msub>\\n <mi>ℓ</mi>\\n <mn>1</mn>\\n </msub>\\n <annotation>$\\\\ell _1$</annotation>\\n </semantics></math>. This is achieved after proving that on the analogous algebra for <span></span><math>\\n <semantics>\\n <msub>\\n <mi>ℓ</mi>\\n <mi>p</mi>\\n </msub>\\n <annotation>$\\\\ell _p$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>1</mn>\\n <mo>≤</mo>\\n <mi>p</mi>\\n <mo>&lt;</mo>\\n <mi>∞</mi>\\n </mrow>\\n <annotation>$1\\\\le p &amp;lt;\\\\infty$</annotation>\\n </semantics></math>, the radius function of any evaluation homomorphism <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>δ</mi>\\n <mi>x</mi>\\n </msub>\\n <mo>,</mo>\\n <mspace></mspace>\\n <mi>x</mi>\\n <mo>∈</mo>\\n <msub>\\n <mi>ℓ</mi>\\n <mi>p</mi>\\n </msub>\\n </mrow>\\n <annotation>$\\\\delta _x, \\\\nobreakspace x \\\\in \\\\ell _p$</annotation>\\n </semantics></math>, coincides with the norm of <span></span><math>\\n <semantics>\\n <mi>x</mi>\\n <annotation>$x$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们得到了序列空间上球上有界对称解析函数弗雷谢特代数谱的完整描述。这是在证明了在Ⅳ的类似代数上,任何评价同态Ⅳ的半径函数与Ⅳ的规范重合之后实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the spectrum of the algebra of bounded-type symmetric analytic functions on ℓ 1 $\ell _1$

We obtain a complete description of the spectrum of the Fréchet algebra of symmetric analytic functions bounded on balls on the sequence space 1 $\ell _1$ . This is achieved after proving that on the analogous algebra for p $\ell _p$ , 1 p < $1\le p &lt;\infty$ , the radius function of any evaluation homomorphism δ x , x p $\delta _x, \nobreakspace x \in \ell _p$ , coincides with the norm of x $x$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信