{"title":"论 ℓ1$\\ell _1$ 上有界型对称解析函数代数的谱","authors":"Iryna Chernega, Pablo Galindo, Andriy Zagorodnyuk","doi":"10.1002/mana.202300415","DOIUrl":null,"url":null,"abstract":"<p>We obtain a complete description of the spectrum of the Fréchet algebra of symmetric analytic functions bounded on balls on the sequence space <span></span><math>\n <semantics>\n <msub>\n <mi>ℓ</mi>\n <mn>1</mn>\n </msub>\n <annotation>$\\ell _1$</annotation>\n </semantics></math>. This is achieved after proving that on the analogous algebra for <span></span><math>\n <semantics>\n <msub>\n <mi>ℓ</mi>\n <mi>p</mi>\n </msub>\n <annotation>$\\ell _p$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>≤</mo>\n <mi>p</mi>\n <mo><</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$1\\le p &lt;\\infty$</annotation>\n </semantics></math>, the radius function of any evaluation homomorphism <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>δ</mi>\n <mi>x</mi>\n </msub>\n <mo>,</mo>\n <mspace></mspace>\n <mi>x</mi>\n <mo>∈</mo>\n <msub>\n <mi>ℓ</mi>\n <mi>p</mi>\n </msub>\n </mrow>\n <annotation>$\\delta _x, \\nobreakspace x \\in \\ell _p$</annotation>\n </semantics></math>, coincides with the norm of <span></span><math>\n <semantics>\n <mi>x</mi>\n <annotation>$x$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the spectrum of the algebra of bounded-type symmetric analytic functions on \\n \\n \\n ℓ\\n 1\\n \\n $\\\\ell _1$\",\"authors\":\"Iryna Chernega, Pablo Galindo, Andriy Zagorodnyuk\",\"doi\":\"10.1002/mana.202300415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We obtain a complete description of the spectrum of the Fréchet algebra of symmetric analytic functions bounded on balls on the sequence space <span></span><math>\\n <semantics>\\n <msub>\\n <mi>ℓ</mi>\\n <mn>1</mn>\\n </msub>\\n <annotation>$\\\\ell _1$</annotation>\\n </semantics></math>. This is achieved after proving that on the analogous algebra for <span></span><math>\\n <semantics>\\n <msub>\\n <mi>ℓ</mi>\\n <mi>p</mi>\\n </msub>\\n <annotation>$\\\\ell _p$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>1</mn>\\n <mo>≤</mo>\\n <mi>p</mi>\\n <mo><</mo>\\n <mi>∞</mi>\\n </mrow>\\n <annotation>$1\\\\le p &lt;\\\\infty$</annotation>\\n </semantics></math>, the radius function of any evaluation homomorphism <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>δ</mi>\\n <mi>x</mi>\\n </msub>\\n <mo>,</mo>\\n <mspace></mspace>\\n <mi>x</mi>\\n <mo>∈</mo>\\n <msub>\\n <mi>ℓ</mi>\\n <mi>p</mi>\\n </msub>\\n </mrow>\\n <annotation>$\\\\delta _x, \\\\nobreakspace x \\\\in \\\\ell _p$</annotation>\\n </semantics></math>, coincides with the norm of <span></span><math>\\n <semantics>\\n <mi>x</mi>\\n <annotation>$x$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the spectrum of the algebra of bounded-type symmetric analytic functions on
ℓ
1
$\ell _1$
We obtain a complete description of the spectrum of the Fréchet algebra of symmetric analytic functions bounded on balls on the sequence space . This is achieved after proving that on the analogous algebra for , , the radius function of any evaluation homomorphism , coincides with the norm of .