Justin S. Lesser, Christopher J. Floreani, Allie C. Shiers, Jason D. Stockwell, J. Ellen Marsden
{"title":"鳟鲈鱼(Percopsis omiscomaycus)在近岸和离岸湖泊食物网耦合中的潜在营养作用","authors":"Justin S. Lesser, Christopher J. Floreani, Allie C. Shiers, Jason D. Stockwell, J. Ellen Marsden","doi":"10.1007/s10750-024-05656-6","DOIUrl":null,"url":null,"abstract":"<p>Trout-perch (<i>Percopsis omiscomaycus</i>) is an abundant, small-bodied, benthic fish species often found in deeper regions of large lake ecosystems. Historical evidence suggests that Trout-perch may participate in nearshore lake food webs by migrating from deep to shallow areas at night. However, little is known about Trout-perch ecology or their potential role in nearshore food webs. We used Trout-perch abundance estimates, diet analysis, and benthic invertebrate community surveys to (1) assess Trout-perch trophic ecology in Lake Champlain, USA/CAN, and (2) determine whether deepwater prey resources existed at sufficient densities to support Trout-perch populations or whether supplemental prey resources were required. Trout-perch showed variability in size and biomass across lake regions, but diet patterns were largely consistent across the lake, with > 50% of diets consisting of emergent insect larvae and oligochaetes. Results suggest that migrations into nearshore habitats may be required to sustain Lake Champlain’s Trout-perch populations, and therefore, Trout-perch could function as conduits of allochthonous energy across distinct lake habitat boundaries. This study is one of only a few that have examined the trophic ecology of Trout-perch in deep lakes and fundamentally improves our understanding of energy flow and coupling between distinct lake food web compartments in large lakes.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A potential trophic role for Trout-perch (Percopsis omiscomaycus) in coupling nearshore and offshore lake food webs\",\"authors\":\"Justin S. Lesser, Christopher J. Floreani, Allie C. Shiers, Jason D. Stockwell, J. Ellen Marsden\",\"doi\":\"10.1007/s10750-024-05656-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Trout-perch (<i>Percopsis omiscomaycus</i>) is an abundant, small-bodied, benthic fish species often found in deeper regions of large lake ecosystems. Historical evidence suggests that Trout-perch may participate in nearshore lake food webs by migrating from deep to shallow areas at night. However, little is known about Trout-perch ecology or their potential role in nearshore food webs. We used Trout-perch abundance estimates, diet analysis, and benthic invertebrate community surveys to (1) assess Trout-perch trophic ecology in Lake Champlain, USA/CAN, and (2) determine whether deepwater prey resources existed at sufficient densities to support Trout-perch populations or whether supplemental prey resources were required. Trout-perch showed variability in size and biomass across lake regions, but diet patterns were largely consistent across the lake, with > 50% of diets consisting of emergent insect larvae and oligochaetes. Results suggest that migrations into nearshore habitats may be required to sustain Lake Champlain’s Trout-perch populations, and therefore, Trout-perch could function as conduits of allochthonous energy across distinct lake habitat boundaries. This study is one of only a few that have examined the trophic ecology of Trout-perch in deep lakes and fundamentally improves our understanding of energy flow and coupling between distinct lake food web compartments in large lakes.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10750-024-05656-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10750-024-05656-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
A potential trophic role for Trout-perch (Percopsis omiscomaycus) in coupling nearshore and offshore lake food webs
Trout-perch (Percopsis omiscomaycus) is an abundant, small-bodied, benthic fish species often found in deeper regions of large lake ecosystems. Historical evidence suggests that Trout-perch may participate in nearshore lake food webs by migrating from deep to shallow areas at night. However, little is known about Trout-perch ecology or their potential role in nearshore food webs. We used Trout-perch abundance estimates, diet analysis, and benthic invertebrate community surveys to (1) assess Trout-perch trophic ecology in Lake Champlain, USA/CAN, and (2) determine whether deepwater prey resources existed at sufficient densities to support Trout-perch populations or whether supplemental prey resources were required. Trout-perch showed variability in size and biomass across lake regions, but diet patterns were largely consistent across the lake, with > 50% of diets consisting of emergent insect larvae and oligochaetes. Results suggest that migrations into nearshore habitats may be required to sustain Lake Champlain’s Trout-perch populations, and therefore, Trout-perch could function as conduits of allochthonous energy across distinct lake habitat boundaries. This study is one of only a few that have examined the trophic ecology of Trout-perch in deep lakes and fundamentally improves our understanding of energy flow and coupling between distinct lake food web compartments in large lakes.