耦合非线性薛定谔系统的线性化解耦质量和能量守恒 CN Galerkin FEM

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Dongyang Shi, Zhenqi Qi
{"title":"耦合非线性薛定谔系统的线性化解耦质量和能量守恒 CN Galerkin FEM","authors":"Dongyang Shi, Zhenqi Qi","doi":"10.1007/s10915-024-02632-z","DOIUrl":null,"url":null,"abstract":"<p>In this paper, a linearized decoupled mass and energy conservation Crank-Nicolson (CN) fully-discrete scheme is proposed for the coupled nonlinear Schrödinger (CNLS) system with the conforming bilinear Galerkin finite element method (FEM), and the unconditional supercloseness and superconvergence error estimates in <span>\\(H^1\\)</span>-norm are deduced rigorously. Firstly, with the aid of the popular time-space splitting technique, that is, by introducing a suitable time discrete system, the error is divided into two parts, the time error and spatial error, the boundedness of numerical solution in <span>\\(L^\\infty \\)</span>-norm is derived strictly without any constraint between the mesh size <i>h</i> and the time step <span>\\(\\tau \\)</span>. Then, thanks to the high accuracy result between the interpolation and Ritz projection, the unconditional superclose error estimate is obtained, and the corresponding unconditional superconvergence result is acquired through the interpolation post-processing technique. At last, some numerical results are supplied to verify the theoretical analysis.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linearized Decoupled Mass and Energy Conservation CN Galerkin FEM for the Coupled Nonlinear Schrödinger System\",\"authors\":\"Dongyang Shi, Zhenqi Qi\",\"doi\":\"10.1007/s10915-024-02632-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, a linearized decoupled mass and energy conservation Crank-Nicolson (CN) fully-discrete scheme is proposed for the coupled nonlinear Schrödinger (CNLS) system with the conforming bilinear Galerkin finite element method (FEM), and the unconditional supercloseness and superconvergence error estimates in <span>\\\\(H^1\\\\)</span>-norm are deduced rigorously. Firstly, with the aid of the popular time-space splitting technique, that is, by introducing a suitable time discrete system, the error is divided into two parts, the time error and spatial error, the boundedness of numerical solution in <span>\\\\(L^\\\\infty \\\\)</span>-norm is derived strictly without any constraint between the mesh size <i>h</i> and the time step <span>\\\\(\\\\tau \\\\)</span>. Then, thanks to the high accuracy result between the interpolation and Ritz projection, the unconditional superclose error estimate is obtained, and the corresponding unconditional superconvergence result is acquired through the interpolation post-processing technique. At last, some numerical results are supplied to verify the theoretical analysis.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10915-024-02632-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02632-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文针对耦合非线性薛定谔(CNLS)系统,提出了一种线性化解耦质量和能量守恒 Crank-Nicolson (CN)全离散方案与符合双线性 Galerkin 有限元法(FEM),并严格推导了 \(H^1\)规范下的无条件超松和超收敛误差估计。首先,借助流行的时空分割技术,即通过引入合适的时间离散系统,将误差分为时间误差和空间误差两部分,在网格尺寸 h 和时间步长 \(\tau \)之间没有任何约束的情况下,严格推导出数值解在 \(L^\infty \)-规范下的有界性。然后,由于插值与里兹投影之间的高精度结果,得到了无条件超近似误差估计,并通过插值后处理技术得到了相应的无条件超收敛结果。最后,提供了一些数值结果来验证理论分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Linearized Decoupled Mass and Energy Conservation CN Galerkin FEM for the Coupled Nonlinear Schrödinger System

Linearized Decoupled Mass and Energy Conservation CN Galerkin FEM for the Coupled Nonlinear Schrödinger System

In this paper, a linearized decoupled mass and energy conservation Crank-Nicolson (CN) fully-discrete scheme is proposed for the coupled nonlinear Schrödinger (CNLS) system with the conforming bilinear Galerkin finite element method (FEM), and the unconditional supercloseness and superconvergence error estimates in \(H^1\)-norm are deduced rigorously. Firstly, with the aid of the popular time-space splitting technique, that is, by introducing a suitable time discrete system, the error is divided into two parts, the time error and spatial error, the boundedness of numerical solution in \(L^\infty \)-norm is derived strictly without any constraint between the mesh size h and the time step \(\tau \). Then, thanks to the high accuracy result between the interpolation and Ritz projection, the unconditional superclose error estimate is obtained, and the corresponding unconditional superconvergence result is acquired through the interpolation post-processing technique. At last, some numerical results are supplied to verify the theoretical analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信