针对三阶张量的广义张量分解与异质张量乘积

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yun-Yang Liu, Xi-Le Zhao, Meng Ding, Jianjun Wang, Tai-Xiang Jiang, Ting-Zhu Huang
{"title":"针对三阶张量的广义张量分解与异质张量乘积","authors":"Yun-Yang Liu, Xi-Le Zhao, Meng Ding, Jianjun Wang, Tai-Xiang Jiang, Ting-Zhu Huang","doi":"10.1007/s10915-024-02637-8","DOIUrl":null,"url":null,"abstract":"<p>Recently, tensor decompositions have attracted increasing attention and shown promising performance in processing multi-dimensional data. However, the existing tensor decompositions assume that the correlation along one mode is homogeneous and thus cannot characterize the multiple types of correlations (i.e., heterogeneous correlation) along the mode in real data. To address this issue, we propose a heterogeneous tensor product that allows us to explore this heterogeneous correlation, which can degenerate into the classic tensor products (e.g., mode product and tensor–tensor product). Equipped with this heterogeneous tensor product, we develop a generalized tensor decomposition (GTD) framework for third-order tensors, which not only induces many novel tensor decompositions but also helps us to better understand the interrelationships between the new tensor decompositions and the existing tensor decompositions. Especially, under the GTD framework, we find that new tensor decompositions can faithfully characterize the multiple types of correlations along the mode. To examine the effectiveness of the new tensor decomposition, we evaluate its performance on a representative data compression task. Extensive experimental results on multispectral images, light field images, and videos compression demonstrate the superior performance of our developed tensor decomposition compared to other existing tensor decompositions.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Generalized Tensor Decomposition with Heterogeneous Tensor Product for Third-Order Tensors\",\"authors\":\"Yun-Yang Liu, Xi-Le Zhao, Meng Ding, Jianjun Wang, Tai-Xiang Jiang, Ting-Zhu Huang\",\"doi\":\"10.1007/s10915-024-02637-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recently, tensor decompositions have attracted increasing attention and shown promising performance in processing multi-dimensional data. However, the existing tensor decompositions assume that the correlation along one mode is homogeneous and thus cannot characterize the multiple types of correlations (i.e., heterogeneous correlation) along the mode in real data. To address this issue, we propose a heterogeneous tensor product that allows us to explore this heterogeneous correlation, which can degenerate into the classic tensor products (e.g., mode product and tensor–tensor product). Equipped with this heterogeneous tensor product, we develop a generalized tensor decomposition (GTD) framework for third-order tensors, which not only induces many novel tensor decompositions but also helps us to better understand the interrelationships between the new tensor decompositions and the existing tensor decompositions. Especially, under the GTD framework, we find that new tensor decompositions can faithfully characterize the multiple types of correlations along the mode. To examine the effectiveness of the new tensor decomposition, we evaluate its performance on a representative data compression task. Extensive experimental results on multispectral images, light field images, and videos compression demonstrate the superior performance of our developed tensor decomposition compared to other existing tensor decompositions.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10915-024-02637-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02637-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

近来,张量分解越来越受到关注,并在处理多维数据方面表现出良好的性能。然而,现有的张量分解假设沿一种模式的相关性是同质的,因此无法表征真实数据中沿模式的多种类型的相关性(即异质相关性)。为了解决这个问题,我们提出了一种异质张量乘积,它允许我们探索这种异质相关性,这种异质相关性可以退化为经典的张量乘积(如模式乘积和张量-张量乘积)。有了这种异质张量积,我们为三阶张量建立了广义张量分解(GTD)框架,它不仅能诱导出许多新的张量分解,还能帮助我们更好地理解新张量分解与现有张量分解之间的相互关系。特别是在 GTD 框架下,我们发现新的张量分解可以忠实地描述沿模式的多种类型的相关性。为了检验新张量分解的有效性,我们在一项具有代表性的数据压缩任务中对其性能进行了评估。在多光谱图像、光场图像和视频压缩方面的大量实验结果表明,与其他现有的张量分解相比,我们开发的张量分解具有卓越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Generalized Tensor Decomposition with Heterogeneous Tensor Product for Third-Order Tensors

The Generalized Tensor Decomposition with Heterogeneous Tensor Product for Third-Order Tensors

Recently, tensor decompositions have attracted increasing attention and shown promising performance in processing multi-dimensional data. However, the existing tensor decompositions assume that the correlation along one mode is homogeneous and thus cannot characterize the multiple types of correlations (i.e., heterogeneous correlation) along the mode in real data. To address this issue, we propose a heterogeneous tensor product that allows us to explore this heterogeneous correlation, which can degenerate into the classic tensor products (e.g., mode product and tensor–tensor product). Equipped with this heterogeneous tensor product, we develop a generalized tensor decomposition (GTD) framework for third-order tensors, which not only induces many novel tensor decompositions but also helps us to better understand the interrelationships between the new tensor decompositions and the existing tensor decompositions. Especially, under the GTD framework, we find that new tensor decompositions can faithfully characterize the multiple types of correlations along the mode. To examine the effectiveness of the new tensor decomposition, we evaluate its performance on a representative data compression task. Extensive experimental results on multispectral images, light field images, and videos compression demonstrate the superior performance of our developed tensor decomposition compared to other existing tensor decompositions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信