{"title":"GRDATFusion:用于云计算和雾计算中智慧城市安防系统的梯度残差密集和注意力变换器红外与可见光图像融合网络","authors":"Jian Zheng, Seunggil Jeon, Xiaomin Yang","doi":"10.1111/exsy.13685","DOIUrl":null,"url":null,"abstract":"The infrared and visible fusion technology holds a pivotal position in smart city for cloud and fog computing, particularly in security system. By fusing infrared and visible image information, this technology enhances target identification, tracking and monitoring precision, bolstering overall system security. However, existing deep learning‐based methods rely heavily on convolutional operations, which excel at extracting local features but have limited receptive fields, hampering global information capture. To overcome this difficulty, we introduce GRDATFusion, a novel end‐to‐end network comprising three key modules: transformer, gradient residual dense and attention residual. The gradient residual dense module extracts local complementary features, leveraging a dense‐shaped network to retain potentially lost information. The attention residual module focuses on crucial input image details, while the transformer module captures global information and models long‐range dependencies. Experiments on public datasets show that GRDATFusion outperforms state‐of‐the‐art algorithms in qualitative and quantitative assessments. Ablation studies validate our approach's advantages, and efficiency comparisons demonstrate its computational efficiency. Therefore, our method makes the security systems in smart city with shorter delay and satisfies the real‐time requirement.","PeriodicalId":51053,"journal":{"name":"Expert Systems","volume":"44 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GRDATFusion: A gradient residual dense and attention transformer infrared and visible image fusion network for smart city security systems in cloud and fog computing\",\"authors\":\"Jian Zheng, Seunggil Jeon, Xiaomin Yang\",\"doi\":\"10.1111/exsy.13685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The infrared and visible fusion technology holds a pivotal position in smart city for cloud and fog computing, particularly in security system. By fusing infrared and visible image information, this technology enhances target identification, tracking and monitoring precision, bolstering overall system security. However, existing deep learning‐based methods rely heavily on convolutional operations, which excel at extracting local features but have limited receptive fields, hampering global information capture. To overcome this difficulty, we introduce GRDATFusion, a novel end‐to‐end network comprising three key modules: transformer, gradient residual dense and attention residual. The gradient residual dense module extracts local complementary features, leveraging a dense‐shaped network to retain potentially lost information. The attention residual module focuses on crucial input image details, while the transformer module captures global information and models long‐range dependencies. Experiments on public datasets show that GRDATFusion outperforms state‐of‐the‐art algorithms in qualitative and quantitative assessments. Ablation studies validate our approach's advantages, and efficiency comparisons demonstrate its computational efficiency. Therefore, our method makes the security systems in smart city with shorter delay and satisfies the real‐time requirement.\",\"PeriodicalId\":51053,\"journal\":{\"name\":\"Expert Systems\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1111/exsy.13685\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1111/exsy.13685","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
GRDATFusion: A gradient residual dense and attention transformer infrared and visible image fusion network for smart city security systems in cloud and fog computing
The infrared and visible fusion technology holds a pivotal position in smart city for cloud and fog computing, particularly in security system. By fusing infrared and visible image information, this technology enhances target identification, tracking and monitoring precision, bolstering overall system security. However, existing deep learning‐based methods rely heavily on convolutional operations, which excel at extracting local features but have limited receptive fields, hampering global information capture. To overcome this difficulty, we introduce GRDATFusion, a novel end‐to‐end network comprising three key modules: transformer, gradient residual dense and attention residual. The gradient residual dense module extracts local complementary features, leveraging a dense‐shaped network to retain potentially lost information. The attention residual module focuses on crucial input image details, while the transformer module captures global information and models long‐range dependencies. Experiments on public datasets show that GRDATFusion outperforms state‐of‐the‐art algorithms in qualitative and quantitative assessments. Ablation studies validate our approach's advantages, and efficiency comparisons demonstrate its computational efficiency. Therefore, our method makes the security systems in smart city with shorter delay and satisfies the real‐time requirement.
期刊介绍:
Expert Systems: The Journal of Knowledge Engineering publishes papers dealing with all aspects of knowledge engineering, including individual methods and techniques in knowledge acquisition and representation, and their application in the construction of systems – including expert systems – based thereon. Detailed scientific evaluation is an essential part of any paper.
As well as traditional application areas, such as Software and Requirements Engineering, Human-Computer Interaction, and Artificial Intelligence, we are aiming at the new and growing markets for these technologies, such as Business, Economy, Market Research, and Medical and Health Care. The shift towards this new focus will be marked by a series of special issues covering hot and emergent topics.