{"title":"通过 FFT 图嵌入构建基于正常状态的健康指标","authors":"GwanPil Kim, Jason J. Jung, David Camacho","doi":"10.1111/exsy.13689","DOIUrl":null,"url":null,"abstract":"<p>Unexpected faults in rotating machinery can lead to cascading disruptions of the entire work process, emphasizing the importance of early detection of performance degradation and identification of the current state. To accurately assess the health of a machine, this study introduces an FFT-based raw vibration data preprocessing and graph representation technique, which analyses changes in frequency bands to detect early degradation trends in vibration data that may appear normal. The approach proposes a methodology that utilizes a graph convolutional autoencoder trained using only normal data to extract health indicators using the differences in the vectors as degradation progresses. This approach has the advantage of using only normal data to detect subtle performance degradation early and effectively represent health indicators accordingly.</p>","PeriodicalId":51053,"journal":{"name":"Expert Systems","volume":"41 11","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/exsy.13689","citationCount":"0","resultStr":"{\"title\":\"Health indicator construction based on normal states through FFT-graph embedding\",\"authors\":\"GwanPil Kim, Jason J. Jung, David Camacho\",\"doi\":\"10.1111/exsy.13689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Unexpected faults in rotating machinery can lead to cascading disruptions of the entire work process, emphasizing the importance of early detection of performance degradation and identification of the current state. To accurately assess the health of a machine, this study introduces an FFT-based raw vibration data preprocessing and graph representation technique, which analyses changes in frequency bands to detect early degradation trends in vibration data that may appear normal. The approach proposes a methodology that utilizes a graph convolutional autoencoder trained using only normal data to extract health indicators using the differences in the vectors as degradation progresses. This approach has the advantage of using only normal data to detect subtle performance degradation early and effectively represent health indicators accordingly.</p>\",\"PeriodicalId\":51053,\"journal\":{\"name\":\"Expert Systems\",\"volume\":\"41 11\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/exsy.13689\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/exsy.13689\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/exsy.13689","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Health indicator construction based on normal states through FFT-graph embedding
Unexpected faults in rotating machinery can lead to cascading disruptions of the entire work process, emphasizing the importance of early detection of performance degradation and identification of the current state. To accurately assess the health of a machine, this study introduces an FFT-based raw vibration data preprocessing and graph representation technique, which analyses changes in frequency bands to detect early degradation trends in vibration data that may appear normal. The approach proposes a methodology that utilizes a graph convolutional autoencoder trained using only normal data to extract health indicators using the differences in the vectors as degradation progresses. This approach has the advantage of using only normal data to detect subtle performance degradation early and effectively represent health indicators accordingly.
期刊介绍:
Expert Systems: The Journal of Knowledge Engineering publishes papers dealing with all aspects of knowledge engineering, including individual methods and techniques in knowledge acquisition and representation, and their application in the construction of systems – including expert systems – based thereon. Detailed scientific evaluation is an essential part of any paper.
As well as traditional application areas, such as Software and Requirements Engineering, Human-Computer Interaction, and Artificial Intelligence, we are aiming at the new and growing markets for these technologies, such as Business, Economy, Market Research, and Medical and Health Care. The shift towards this new focus will be marked by a series of special issues covering hot and emergent topics.