Mohammed Mujtaba Atif, Sheng-Wei Chi, Xuejun Li, Jianfei Tian
{"title":"模拟弹药入土的稳定无网格方法","authors":"Mohammed Mujtaba Atif, Sheng-Wei Chi, Xuejun Li, Jianfei Tian","doi":"10.1007/s00366-024-02028-5","DOIUrl":null,"url":null,"abstract":"<p>Meshfree methods, such as the Reproducing Kernel Particle Method, have been proven advantageous in modeling excessive deformation problems involving material separation, fracture, impact, etc. However, the domain integration in RKPM remains challenging due to instability and sub-optimal convergence for high strain rate events. Although some novel developments alleviate the above issue, they are either computationally expensive or require evaluating the contour integral, which is not straightforward to obtain in contact and material separation problems using meshfree discretization. This work develops a simple and stable integration method based on the extension of modified Simpson’s rule. The method is free from conforming subdomains and can straightforwardly be applied to the meshfree formulation with updated configuration. To model penetration into the earth, a standard viscous boundary is introduced to address the issue of reflecting waves from the truncated computational domain for the ground target. The numerical results are validated with experimental data for various geo-materials and experimental setups.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":"74 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A stable meshfree method for simulations of munition penetration into earth\",\"authors\":\"Mohammed Mujtaba Atif, Sheng-Wei Chi, Xuejun Li, Jianfei Tian\",\"doi\":\"10.1007/s00366-024-02028-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Meshfree methods, such as the Reproducing Kernel Particle Method, have been proven advantageous in modeling excessive deformation problems involving material separation, fracture, impact, etc. However, the domain integration in RKPM remains challenging due to instability and sub-optimal convergence for high strain rate events. Although some novel developments alleviate the above issue, they are either computationally expensive or require evaluating the contour integral, which is not straightforward to obtain in contact and material separation problems using meshfree discretization. This work develops a simple and stable integration method based on the extension of modified Simpson’s rule. The method is free from conforming subdomains and can straightforwardly be applied to the meshfree formulation with updated configuration. To model penetration into the earth, a standard viscous boundary is introduced to address the issue of reflecting waves from the truncated computational domain for the ground target. The numerical results are validated with experimental data for various geo-materials and experimental setups.</p>\",\"PeriodicalId\":11696,\"journal\":{\"name\":\"Engineering with Computers\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering with Computers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00366-024-02028-5\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering with Computers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00366-024-02028-5","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
A stable meshfree method for simulations of munition penetration into earth
Meshfree methods, such as the Reproducing Kernel Particle Method, have been proven advantageous in modeling excessive deformation problems involving material separation, fracture, impact, etc. However, the domain integration in RKPM remains challenging due to instability and sub-optimal convergence for high strain rate events. Although some novel developments alleviate the above issue, they are either computationally expensive or require evaluating the contour integral, which is not straightforward to obtain in contact and material separation problems using meshfree discretization. This work develops a simple and stable integration method based on the extension of modified Simpson’s rule. The method is free from conforming subdomains and can straightforwardly be applied to the meshfree formulation with updated configuration. To model penetration into the earth, a standard viscous boundary is introduced to address the issue of reflecting waves from the truncated computational domain for the ground target. The numerical results are validated with experimental data for various geo-materials and experimental setups.
期刊介绍:
Engineering with Computers is an international journal dedicated to simulation-based engineering. It features original papers and comprehensive reviews on technologies supporting simulation-based engineering, along with demonstrations of operational simulation-based engineering systems. The journal covers various technical areas such as adaptive simulation techniques, engineering databases, CAD geometry integration, mesh generation, parallel simulation methods, simulation frameworks, user interface technologies, and visualization techniques. It also encompasses a wide range of application areas where engineering technologies are applied, spanning from automotive industry applications to medical device design.