大自然降解长链碳氢化合物的解决方案:蜂蜡和食塑昆虫幼虫的生命周期研究

IF 4.7 3区 工程技术 Q2 ENGINEERING, ENVIRONMENTAL
Harsha Kundungal, Radhakrishnan Amal, Suja Purushothaman Devipriya
{"title":"大自然降解长链碳氢化合物的解决方案:蜂蜡和食塑昆虫幼虫的生命周期研究","authors":"Harsha Kundungal, Radhakrishnan Amal, Suja Purushothaman Devipriya","doi":"10.1007/s10924-024-03366-7","DOIUrl":null,"url":null,"abstract":"<p>Recent studies have reported the biodegradation of polyethylene waste in the gut of beeswax-eating insect larvae of <i>Galleria mellonella</i> and <i>Achroia grisella.</i> In this study we examined the life cycle stages and duration of each stage of three common beeswax eating honeybee pests (<i>G. mellonella</i>,<i> A. grisella</i>, and <i>Uloma</i> sp.) from <i>Apis cerana indica</i> colonies under laboratory conditions. The insect larvae of the three species were provided with beeswax, low density polyethylene (PE), or expanded polystyrene (PS) foam diet. The weight loss of beeswax, PE, and PS feed as a function of time caused by the consumption of the three insect larvae were measured. Additionally, the effects of beeswax, PE, and PS feed on the development and survival of the three insect larvae were studied. The beeswax-feeding insects <i>G. mellonella</i>,<i> A. grisella</i>, and <i>Uloma</i> sp. completed their life cycles with average durations of 62 ± 2.1 days, 49 ± 3.6 days, 202 ± 3.2 days, respectively. The <i>G. mellonella</i>, <i>A. grisella</i>, and <i>Uloma</i> sp. larvae ate and digested beeswax, PE, and PS. The insect larvae were found to survive on plastic diets (PE and PS) but a decreased body mass was observed compared to that of beeswax-eating conspecifics. The insect larvae that eat and digest beeswax and plastics could help to eliminate global pollution from recalcitrant plastic wastes.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nature’s Solution to Degrade Long-Chain Hydrocarbons: A Life Cycle Study of Beeswax and Plastic-Eating Insect Larvae\",\"authors\":\"Harsha Kundungal, Radhakrishnan Amal, Suja Purushothaman Devipriya\",\"doi\":\"10.1007/s10924-024-03366-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recent studies have reported the biodegradation of polyethylene waste in the gut of beeswax-eating insect larvae of <i>Galleria mellonella</i> and <i>Achroia grisella.</i> In this study we examined the life cycle stages and duration of each stage of three common beeswax eating honeybee pests (<i>G. mellonella</i>,<i> A. grisella</i>, and <i>Uloma</i> sp.) from <i>Apis cerana indica</i> colonies under laboratory conditions. The insect larvae of the three species were provided with beeswax, low density polyethylene (PE), or expanded polystyrene (PS) foam diet. The weight loss of beeswax, PE, and PS feed as a function of time caused by the consumption of the three insect larvae were measured. Additionally, the effects of beeswax, PE, and PS feed on the development and survival of the three insect larvae were studied. The beeswax-feeding insects <i>G. mellonella</i>,<i> A. grisella</i>, and <i>Uloma</i> sp. completed their life cycles with average durations of 62 ± 2.1 days, 49 ± 3.6 days, 202 ± 3.2 days, respectively. The <i>G. mellonella</i>, <i>A. grisella</i>, and <i>Uloma</i> sp. larvae ate and digested beeswax, PE, and PS. The insect larvae were found to survive on plastic diets (PE and PS) but a decreased body mass was observed compared to that of beeswax-eating conspecifics. The insect larvae that eat and digest beeswax and plastics could help to eliminate global pollution from recalcitrant plastic wastes.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\",\"PeriodicalId\":659,\"journal\":{\"name\":\"Journal of Polymers and the Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polymers and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10924-024-03366-7\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymers and the Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10924-024-03366-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

最近的研究报道了聚乙烯废料在蜜蜂幼虫(Galleria mellonella)和灰蜂幼虫(Achroia grisella)肠道中的生物降解情况。在本研究中,我们在实验室条件下研究了三种常见的蜜蜂害虫(G. mellonella、A. grisella 和 Uloma sp.)的生命周期阶段和每个阶段的持续时间。为这三种害虫的幼虫提供蜂蜡、低密度聚乙烯(PE)或发泡聚苯乙烯(PS)食物。测量了三种昆虫幼虫食用蜂蜡、聚乙烯和聚苯乙烯饲料后随时间变化的重量损失。此外,还研究了蜂蜡、聚乙烯和聚苯乙烯饲料对三种昆虫幼虫发育和存活的影响。以蜂蜡为食的昆虫 G. mellonella、A. grisella 和 Uloma sp.完成生命周期的平均时间分别为 62 ± 2.1 天、49 ± 3.6 天和 202 ± 3.2 天。G. mellonella、A. grisella 和 Uloma sp.幼虫食用并消化蜂蜡、PE 和 PS。发现昆虫幼虫能在塑料食物(PE 和 PS)中存活,但与吃蜂蜡的同种昆虫相比,体质量有所下降。吃蜂蜡和塑料的昆虫幼虫有助于消除顽固塑料废物对全球的污染。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nature’s Solution to Degrade Long-Chain Hydrocarbons: A Life Cycle Study of Beeswax and Plastic-Eating Insect Larvae

Nature’s Solution to Degrade Long-Chain Hydrocarbons: A Life Cycle Study of Beeswax and Plastic-Eating Insect Larvae

Recent studies have reported the biodegradation of polyethylene waste in the gut of beeswax-eating insect larvae of Galleria mellonella and Achroia grisella. In this study we examined the life cycle stages and duration of each stage of three common beeswax eating honeybee pests (G. mellonella, A. grisella, and Uloma sp.) from Apis cerana indica colonies under laboratory conditions. The insect larvae of the three species were provided with beeswax, low density polyethylene (PE), or expanded polystyrene (PS) foam diet. The weight loss of beeswax, PE, and PS feed as a function of time caused by the consumption of the three insect larvae were measured. Additionally, the effects of beeswax, PE, and PS feed on the development and survival of the three insect larvae were studied. The beeswax-feeding insects G. mellonella, A. grisella, and Uloma sp. completed their life cycles with average durations of 62 ± 2.1 days, 49 ± 3.6 days, 202 ± 3.2 days, respectively. The G. mellonella, A. grisella, and Uloma sp. larvae ate and digested beeswax, PE, and PS. The insect larvae were found to survive on plastic diets (PE and PS) but a decreased body mass was observed compared to that of beeswax-eating conspecifics. The insect larvae that eat and digest beeswax and plastics could help to eliminate global pollution from recalcitrant plastic wastes.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Polymers and the Environment
Journal of Polymers and the Environment 工程技术-高分子科学
CiteScore
9.50
自引率
7.50%
发文量
297
审稿时长
9 months
期刊介绍: The Journal of Polymers and the Environment fills the need for an international forum in this diverse and rapidly expanding field. The journal serves a crucial role for the publication of information from a wide range of disciplines and is a central outlet for the publication of high-quality peer-reviewed original papers, review articles and short communications. The journal is intentionally interdisciplinary in regard to contributions and covers the following subjects - polymers, environmentally degradable polymers, and degradation pathways: biological, photochemical, oxidative and hydrolytic; new environmental materials: derived by chemical and biosynthetic routes; environmental blends and composites; developments in processing and reactive processing of environmental polymers; characterization of environmental materials: mechanical, physical, thermal, rheological, morphological, and others; recyclable polymers and plastics recycling environmental testing: in-laboratory simulations, outdoor exposures, and standardization of methodologies; environmental fate: end products and intermediates of biodegradation; microbiology and enzymology of polymer biodegradation; solid-waste management and public legislation specific to environmental polymers; and other related topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信