突触可塑性:从多层神经网络中的嵌合状态到同步振荡

IF 3.1 3区 工程技术 Q2 NEUROSCIENCES
Peihua Feng, Luoqi Ye
{"title":"突触可塑性:从多层神经网络中的嵌合状态到同步振荡","authors":"Peihua Feng, Luoqi Ye","doi":"10.1007/s11571-024-10158-1","DOIUrl":null,"url":null,"abstract":"<p>This research scrutinizes the simultaneous evolution of each layer within a multilayered complex neural network and elucidates the effect of synaptic plasticity on inter-layer dynamics. In the absence of synaptic plasticity, a predominant feedforward effect is observed, resulting in the manifestation of complete synchrony in deep networks, with each layer assuming a chimera state. A significant increase in the number of synchronized neurons is observed as the layers augment, culminating in complete synchronization in the deeper sections. The study categorizes the layers into three distinct parts: the initial layers (1–4) demonstrate the emergence of non-uniformity in the random firing of neurons; the middle layers (5–7) exhibit an amplification of this non-uniformity, forming a higher degree of synchronization; and the final layers (8–10) display a completely synchronized process. The introduction of synaptic plasticity disrupts this synchrony, inducing periodic oscillation characteristics across layers. The specificity of these oscillations is notably accentuated with increasing network depth. These insights shed light on the interplay between neural network complexity and synaptic plasticity in influencing synchronization dynamics, presenting avenues for enhanced neural network architectures and refined neuroscientific models. The findings underscore the imperative to delve deeper into the implications of synaptic plasticity on the structure and function of intricate multi-layer neural networks.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synaptic plasticity: from chimera states to synchronicity oscillations in multilayer neural networks\",\"authors\":\"Peihua Feng, Luoqi Ye\",\"doi\":\"10.1007/s11571-024-10158-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This research scrutinizes the simultaneous evolution of each layer within a multilayered complex neural network and elucidates the effect of synaptic plasticity on inter-layer dynamics. In the absence of synaptic plasticity, a predominant feedforward effect is observed, resulting in the manifestation of complete synchrony in deep networks, with each layer assuming a chimera state. A significant increase in the number of synchronized neurons is observed as the layers augment, culminating in complete synchronization in the deeper sections. The study categorizes the layers into three distinct parts: the initial layers (1–4) demonstrate the emergence of non-uniformity in the random firing of neurons; the middle layers (5–7) exhibit an amplification of this non-uniformity, forming a higher degree of synchronization; and the final layers (8–10) display a completely synchronized process. The introduction of synaptic plasticity disrupts this synchrony, inducing periodic oscillation characteristics across layers. The specificity of these oscillations is notably accentuated with increasing network depth. These insights shed light on the interplay between neural network complexity and synaptic plasticity in influencing synchronization dynamics, presenting avenues for enhanced neural network architectures and refined neuroscientific models. The findings underscore the imperative to delve deeper into the implications of synaptic plasticity on the structure and function of intricate multi-layer neural networks.</p>\",\"PeriodicalId\":10500,\"journal\":{\"name\":\"Cognitive Neurodynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neurodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-024-10158-1\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-024-10158-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

这项研究仔细研究了多层复杂神经网络中各层的同步演化,并阐明了突触可塑性对层间动态的影响。在没有突触可塑性的情况下,观察到的是一种占主导地位的前馈效应,从而在深度网络中表现出完全同步,每一层都处于嵌合状态。随着层数的增加,同步神经元的数量也明显增加,最终在较深的部分达到完全同步。研究将各层划分为三个不同的部分:最初层(1-4 层)显示出神经元随机发射中出现的不均匀性;中间层(5-7 层)显示出这种不均匀性的放大,形成更高程度的同步;最后一层(8-10 层)显示出完全同步的过程。突触可塑性的引入破坏了这种同步性,诱发了跨层的周期性振荡特征。这些振荡的特异性随着网络深度的增加而显著增强。这些发现揭示了神经网络复杂性和突触可塑性在影响同步动态方面的相互作用,为增强神经网络架构和完善神经科学模型提供了途径。这些发现强调了深入研究突触可塑性对复杂的多层神经网络的结构和功能的影响的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synaptic plasticity: from chimera states to synchronicity oscillations in multilayer neural networks

Synaptic plasticity: from chimera states to synchronicity oscillations in multilayer neural networks

This research scrutinizes the simultaneous evolution of each layer within a multilayered complex neural network and elucidates the effect of synaptic plasticity on inter-layer dynamics. In the absence of synaptic plasticity, a predominant feedforward effect is observed, resulting in the manifestation of complete synchrony in deep networks, with each layer assuming a chimera state. A significant increase in the number of synchronized neurons is observed as the layers augment, culminating in complete synchronization in the deeper sections. The study categorizes the layers into three distinct parts: the initial layers (1–4) demonstrate the emergence of non-uniformity in the random firing of neurons; the middle layers (5–7) exhibit an amplification of this non-uniformity, forming a higher degree of synchronization; and the final layers (8–10) display a completely synchronized process. The introduction of synaptic plasticity disrupts this synchrony, inducing periodic oscillation characteristics across layers. The specificity of these oscillations is notably accentuated with increasing network depth. These insights shed light on the interplay between neural network complexity and synaptic plasticity in influencing synchronization dynamics, presenting avenues for enhanced neural network architectures and refined neuroscientific models. The findings underscore the imperative to delve deeper into the implications of synaptic plasticity on the structure and function of intricate multi-layer neural networks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cognitive Neurodynamics
Cognitive Neurodynamics 医学-神经科学
CiteScore
6.90
自引率
18.90%
发文量
140
审稿时长
12 months
期刊介绍: Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models. The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome. The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged. 1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics. 2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages. 3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信