{"title":"关于具有阴影特性的完全不规则地图集","authors":"M. Carvalho , V. Coelho , L. Salgado","doi":"10.1016/j.topol.2024.109025","DOIUrl":null,"url":null,"abstract":"<div><p>We prove that the completely irregular set is Baire generic for every non-uniquely ergodic transitive continuous map which satisfies the shadowing property and acts on a compact metric space without isolated points. We also show that, under the previous assumptions, the orbit of every completely irregular point is dense. Afterwards, we analyze the connection between transitivity and the shadowing property, draw a few consequences of their joint action within the family of expansive homeomorphisms, and discuss several examples to test the scope of our results.</p></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"355 ","pages":"Article 109025"},"PeriodicalIF":0.6000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the completely irregular set of maps with the shadowing property\",\"authors\":\"M. Carvalho , V. Coelho , L. Salgado\",\"doi\":\"10.1016/j.topol.2024.109025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove that the completely irregular set is Baire generic for every non-uniquely ergodic transitive continuous map which satisfies the shadowing property and acts on a compact metric space without isolated points. We also show that, under the previous assumptions, the orbit of every completely irregular point is dense. Afterwards, we analyze the connection between transitivity and the shadowing property, draw a few consequences of their joint action within the family of expansive homeomorphisms, and discuss several examples to test the scope of our results.</p></div>\",\"PeriodicalId\":51201,\"journal\":{\"name\":\"Topology and its Applications\",\"volume\":\"355 \",\"pages\":\"Article 109025\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166864124002104\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166864124002104","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the completely irregular set of maps with the shadowing property
We prove that the completely irregular set is Baire generic for every non-uniquely ergodic transitive continuous map which satisfies the shadowing property and acts on a compact metric space without isolated points. We also show that, under the previous assumptions, the orbit of every completely irregular point is dense. Afterwards, we analyze the connection between transitivity and the shadowing property, draw a few consequences of their joint action within the family of expansive homeomorphisms, and discuss several examples to test the scope of our results.
期刊介绍:
Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology.
At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.