Liselot van der Laan, Nicky ten Voorde, Marcel M. A. M. Mannens, Peter Henneman
{"title":"孟德尔神经发育的分子特征:关注泛素化驱动的 DNA 甲基化畸变","authors":"Liselot van der Laan, Nicky ten Voorde, Marcel M. A. M. Mannens, Peter Henneman","doi":"10.3389/fnmol.2024.1446686","DOIUrl":null,"url":null,"abstract":"Mendelian disorders, arising from pathogenic variations within single genetic loci, often manifest as neurodevelopmental disorders (NDDs), affecting a significant portion of the pediatric population worldwide. These disorders are marked by atypical brain development, intellectual disabilities, and various associated phenotypic traits. Genetic testing aids in clinical diagnoses, but inconclusive results can prolong confirmation processes. Recent focus on epigenetic dysregulation has led to the discovery of DNA methylation signatures, or episignatures, associated with NDDs, accelerating diagnostic precision. Notably, TRIP12 and USP7, genes involved in the ubiquitination pathway, exhibit specific episignatures. Understanding the roles of these genes within the ubiquitination pathway sheds light on their potential influence on episignature formation. While TRIP12 acts as an E3 ligase, USP7 functions as a deubiquitinase, presenting contrasting roles within ubiquitination. Comparison of phenotypic traits in patients with pathogenic variations in these genes reveals both distinctions and commonalities, offering insights into underlying pathophysiological mechanisms. This review contextualizes the roles of TRIP12 and USP7 within the ubiquitination pathway, their influence on episignature formation, and the potential implications for NDD pathogenesis. Understanding these intricate relationships may unveil novel therapeutic targets and diagnostic strategies for NDDs.","PeriodicalId":12630,"journal":{"name":"Frontiers in Molecular Neuroscience","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular signatures in Mendelian neurodevelopment: a focus on ubiquitination driven DNA methylation aberrations\",\"authors\":\"Liselot van der Laan, Nicky ten Voorde, Marcel M. A. M. Mannens, Peter Henneman\",\"doi\":\"10.3389/fnmol.2024.1446686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mendelian disorders, arising from pathogenic variations within single genetic loci, often manifest as neurodevelopmental disorders (NDDs), affecting a significant portion of the pediatric population worldwide. These disorders are marked by atypical brain development, intellectual disabilities, and various associated phenotypic traits. Genetic testing aids in clinical diagnoses, but inconclusive results can prolong confirmation processes. Recent focus on epigenetic dysregulation has led to the discovery of DNA methylation signatures, or episignatures, associated with NDDs, accelerating diagnostic precision. Notably, TRIP12 and USP7, genes involved in the ubiquitination pathway, exhibit specific episignatures. Understanding the roles of these genes within the ubiquitination pathway sheds light on their potential influence on episignature formation. While TRIP12 acts as an E3 ligase, USP7 functions as a deubiquitinase, presenting contrasting roles within ubiquitination. Comparison of phenotypic traits in patients with pathogenic variations in these genes reveals both distinctions and commonalities, offering insights into underlying pathophysiological mechanisms. This review contextualizes the roles of TRIP12 and USP7 within the ubiquitination pathway, their influence on episignature formation, and the potential implications for NDD pathogenesis. Understanding these intricate relationships may unveil novel therapeutic targets and diagnostic strategies for NDDs.\",\"PeriodicalId\":12630,\"journal\":{\"name\":\"Frontiers in Molecular Neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Molecular Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fnmol.2024.1446686\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Molecular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnmol.2024.1446686","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Molecular signatures in Mendelian neurodevelopment: a focus on ubiquitination driven DNA methylation aberrations
Mendelian disorders, arising from pathogenic variations within single genetic loci, often manifest as neurodevelopmental disorders (NDDs), affecting a significant portion of the pediatric population worldwide. These disorders are marked by atypical brain development, intellectual disabilities, and various associated phenotypic traits. Genetic testing aids in clinical diagnoses, but inconclusive results can prolong confirmation processes. Recent focus on epigenetic dysregulation has led to the discovery of DNA methylation signatures, or episignatures, associated with NDDs, accelerating diagnostic precision. Notably, TRIP12 and USP7, genes involved in the ubiquitination pathway, exhibit specific episignatures. Understanding the roles of these genes within the ubiquitination pathway sheds light on their potential influence on episignature formation. While TRIP12 acts as an E3 ligase, USP7 functions as a deubiquitinase, presenting contrasting roles within ubiquitination. Comparison of phenotypic traits in patients with pathogenic variations in these genes reveals both distinctions and commonalities, offering insights into underlying pathophysiological mechanisms. This review contextualizes the roles of TRIP12 and USP7 within the ubiquitination pathway, their influence on episignature formation, and the potential implications for NDD pathogenesis. Understanding these intricate relationships may unveil novel therapeutic targets and diagnostic strategies for NDDs.
期刊介绍:
Frontiers in Molecular Neuroscience is a first-tier electronic journal devoted to identifying key molecules, as well as their functions and interactions, that underlie the structure, design and function of the brain across all levels. The scope of our journal encompasses synaptic and cellular proteins, coding and non-coding RNA, and molecular mechanisms regulating cellular and dendritic RNA translation. In recent years, a plethora of new cellular and synaptic players have been identified from reduced systems, such as neuronal cultures, but the relevance of these molecules in terms of cellular and synaptic function and plasticity in the living brain and its circuits has not been validated. The effects of spine growth and density observed using gene products identified from in vitro work are frequently not reproduced in vivo. Our journal is particularly interested in studies on genetically engineered model organisms (C. elegans, Drosophila, mouse), in which alterations in key molecules underlying cellular and synaptic function and plasticity produce defined anatomical, physiological and behavioral changes. In the mouse, genetic alterations limited to particular neural circuits (olfactory bulb, motor cortex, cortical layers, hippocampal subfields, cerebellum), preferably regulated in time and on demand, are of special interest, as they sidestep potential compensatory developmental effects.