{"title":"带有多边形支柱的确定性侧向位移装置临界直径的通用相关性","authors":"Sourabh Das, Ishaan Gupta, Supreet Singh Bahga","doi":"10.1063/5.0214178","DOIUrl":null,"url":null,"abstract":"Deterministic lateral displacement (DLD) is a microfluidic technique that utilizes a specific array of micro-posts to separate cells or particles larger and smaller than a critical diameter. The critical diameter depends on the shape of the posts, the gap between the posts, and the relative shift between the adjacent rows of posts. Here, we present an experimental and numerical investigation to elucidate the functional dependence of the critical diameter of DLD arrays with polygonal posts on the geometric parameters. Based on simulations of fluid flow through DLD devices with varying geometric parameters, we first derived a correlation to predict the critical diameter of DLD arrays with polygonal post shapes having an arbitrary number of sides. We then used a novel experimental approach, wherein we coupled different DLD arrays with an upstream droplet generator to flow droplets of varying sizes and estimate the critical diameter. The critical diameter predicted by the correlation based on simulations compares well with our experimental data and with data available in the literature. The universal correlation for a critical diameter presented here can help design and optimize DLD devices with polygonal posts.","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Universal correlation for the critical diameter of deterministic lateral displacement devices with polygonal posts\",\"authors\":\"Sourabh Das, Ishaan Gupta, Supreet Singh Bahga\",\"doi\":\"10.1063/5.0214178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deterministic lateral displacement (DLD) is a microfluidic technique that utilizes a specific array of micro-posts to separate cells or particles larger and smaller than a critical diameter. The critical diameter depends on the shape of the posts, the gap between the posts, and the relative shift between the adjacent rows of posts. Here, we present an experimental and numerical investigation to elucidate the functional dependence of the critical diameter of DLD arrays with polygonal posts on the geometric parameters. Based on simulations of fluid flow through DLD devices with varying geometric parameters, we first derived a correlation to predict the critical diameter of DLD arrays with polygonal post shapes having an arbitrary number of sides. We then used a novel experimental approach, wherein we coupled different DLD arrays with an upstream droplet generator to flow droplets of varying sizes and estimate the critical diameter. The critical diameter predicted by the correlation based on simulations compares well with our experimental data and with data available in the literature. The universal correlation for a critical diameter presented here can help design and optimize DLD devices with polygonal posts.\",\"PeriodicalId\":8855,\"journal\":{\"name\":\"Biomicrofluidics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomicrofluidics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0214178\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomicrofluidics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0214178","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Universal correlation for the critical diameter of deterministic lateral displacement devices with polygonal posts
Deterministic lateral displacement (DLD) is a microfluidic technique that utilizes a specific array of micro-posts to separate cells or particles larger and smaller than a critical diameter. The critical diameter depends on the shape of the posts, the gap between the posts, and the relative shift between the adjacent rows of posts. Here, we present an experimental and numerical investigation to elucidate the functional dependence of the critical diameter of DLD arrays with polygonal posts on the geometric parameters. Based on simulations of fluid flow through DLD devices with varying geometric parameters, we first derived a correlation to predict the critical diameter of DLD arrays with polygonal post shapes having an arbitrary number of sides. We then used a novel experimental approach, wherein we coupled different DLD arrays with an upstream droplet generator to flow droplets of varying sizes and estimate the critical diameter. The critical diameter predicted by the correlation based on simulations compares well with our experimental data and with data available in the literature. The universal correlation for a critical diameter presented here can help design and optimize DLD devices with polygonal posts.
期刊介绍:
Biomicrofluidics (BMF) is an online-only journal published by AIP Publishing to rapidly disseminate research in fundamental physicochemical mechanisms associated with microfluidic and nanofluidic phenomena. BMF also publishes research in unique microfluidic and nanofluidic techniques for diagnostic, medical, biological, pharmaceutical, environmental, and chemical applications.
BMF offers quick publication, multimedia capability, and worldwide circulation among academic, national, and industrial laboratories. With a primary focus on high-quality original research articles, BMF also organizes special sections that help explain and define specific challenges unique to the interdisciplinary field of biomicrofluidics.
Microfluidic and nanofluidic actuation (electrokinetics, acoustofluidics, optofluidics, capillary)
Liquid Biopsy (microRNA profiling, circulating tumor cell isolation, exosome isolation, circulating tumor DNA quantification)
Cell sorting, manipulation, and transfection (di/electrophoresis, magnetic beads, optical traps, electroporation)
Molecular Separation and Concentration (isotachophoresis, concentration polarization, di/electrophoresis, magnetic beads, nanoparticles)
Cell culture and analysis(single cell assays, stimuli response, stem cell transfection)
Genomic and proteomic analysis (rapid gene sequencing, DNA/protein/carbohydrate arrays)
Biosensors (immuno-assay, nucleic acid fluorescent assay, colorimetric assay, enzyme amplification, plasmonic and Raman nano-reporter, molecular beacon, FRET, aptamer, nanopore, optical fibers)
Biophysical transport and characterization (DNA, single protein, ion channel and membrane dynamics, cell motility and communication mechanisms, electrophysiology, patch clamping). Etc...