带记忆项的半线性 σ$$ \sigma $$-evolution 模型的全局求解

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Ting Xie, Han Yang
{"title":"带记忆项的半线性 σ$$ \\sigma $$-evolution 模型的全局求解","authors":"Ting Xie, Han Yang","doi":"10.1002/mma.10373","DOIUrl":null,"url":null,"abstract":"In this paper, the initial value problem of the semilinear ‐evolution equations with a memory term is concerned. Firstly, using the energy method in the Fourier space, the decay estimates for the solutions to the corresponding linear problem are established. Additionally, assuming small initial data in suitable time‐weighted Sobolev spaces, the global‐in‐time existence of the solutions to the semilinear issue is proved by contraction mapping. Finally, the decay estimates of solutions are obtained under the additional regularity assumption on the initial data.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global solution for semilinear σ$$ \\\\sigma $$‐evolution models with memory term\",\"authors\":\"Ting Xie, Han Yang\",\"doi\":\"10.1002/mma.10373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the initial value problem of the semilinear ‐evolution equations with a memory term is concerned. Firstly, using the energy method in the Fourier space, the decay estimates for the solutions to the corresponding linear problem are established. Additionally, assuming small initial data in suitable time‐weighted Sobolev spaces, the global‐in‐time existence of the solutions to the semilinear issue is proved by contraction mapping. Finally, the decay estimates of solutions are obtained under the additional regularity assumption on the initial data.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/mma.10373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/mma.10373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文关注带记忆项的半线性-演化方程的初值问题。首先,利用傅立叶空间中的能量法,建立了相应线性问题解的衰减估计。此外,假设在合适的时间加权 Sobolev 空间中的初始数据较小,则通过收缩映射证明了半线性问题解的全局时间存在性。最后,在初始数据的附加正则性假设下,得到了解的衰减估计值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global solution for semilinear σ$$ \sigma $$‐evolution models with memory term
In this paper, the initial value problem of the semilinear ‐evolution equations with a memory term is concerned. Firstly, using the energy method in the Fourier space, the decay estimates for the solutions to the corresponding linear problem are established. Additionally, assuming small initial data in suitable time‐weighted Sobolev spaces, the global‐in‐time existence of the solutions to the semilinear issue is proved by contraction mapping. Finally, the decay estimates of solutions are obtained under the additional regularity assumption on the initial data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信