{"title":"从肌肉型到灵巧型:系统回顾,了解建筑和效能方面的机器人分类法","authors":"Yifan Gao, Jiangpeng Shu, Zhe Xia, Yaozhi Luo","doi":"10.1002/rob.22409","DOIUrl":null,"url":null,"abstract":"<p>This work presents an investigation of robotic technologies' effectiveness in construction activities. Sixty-four highly relevant publications were identified from the database. By systematically reviewing the publications, the secondary data that are of interest to the review theme were retrieved and further evaluated. It is found that robotic technologies for automated construction is a growing field, where the taxonomy of robot was reflected in a diversified manner in the existing studies, ranging from the muscular guy—robotic manipulator—to the dexterous ones—unmanned aerial vehicle, autonomous mobile robot, automated guided vehicle, autonomous construction machinery and quadruped robot. In addition, the existing studies have provided substantial evidence to reveal the robotic technologies' effectiveness against traditional human methods in construction scenarios, and the measures for effectiveness consisted of productivity, precision, and success rate. With the evidence, it seems that the construction sector could benefit from robotic technologies to achieve intelligent workflows. Furthermore, based on the existing knowledge foundation in the current literature, a theoretical framework for future research direction is proposed. The framework envisages the integration of large models with construction robots to address operational inefficiencies, reduce costs, and simplify management.</p>","PeriodicalId":192,"journal":{"name":"Journal of Field Robotics","volume":"42 1","pages":"180-205"},"PeriodicalIF":4.2000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From muscular to dexterous: A systematic review to understand the robotic taxonomy in construction and effectiveness\",\"authors\":\"Yifan Gao, Jiangpeng Shu, Zhe Xia, Yaozhi Luo\",\"doi\":\"10.1002/rob.22409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This work presents an investigation of robotic technologies' effectiveness in construction activities. Sixty-four highly relevant publications were identified from the database. By systematically reviewing the publications, the secondary data that are of interest to the review theme were retrieved and further evaluated. It is found that robotic technologies for automated construction is a growing field, where the taxonomy of robot was reflected in a diversified manner in the existing studies, ranging from the muscular guy—robotic manipulator—to the dexterous ones—unmanned aerial vehicle, autonomous mobile robot, automated guided vehicle, autonomous construction machinery and quadruped robot. In addition, the existing studies have provided substantial evidence to reveal the robotic technologies' effectiveness against traditional human methods in construction scenarios, and the measures for effectiveness consisted of productivity, precision, and success rate. With the evidence, it seems that the construction sector could benefit from robotic technologies to achieve intelligent workflows. Furthermore, based on the existing knowledge foundation in the current literature, a theoretical framework for future research direction is proposed. The framework envisages the integration of large models with construction robots to address operational inefficiencies, reduce costs, and simplify management.</p>\",\"PeriodicalId\":192,\"journal\":{\"name\":\"Journal of Field Robotics\",\"volume\":\"42 1\",\"pages\":\"180-205\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Field Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/rob.22409\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Field Robotics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rob.22409","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
From muscular to dexterous: A systematic review to understand the robotic taxonomy in construction and effectiveness
This work presents an investigation of robotic technologies' effectiveness in construction activities. Sixty-four highly relevant publications were identified from the database. By systematically reviewing the publications, the secondary data that are of interest to the review theme were retrieved and further evaluated. It is found that robotic technologies for automated construction is a growing field, where the taxonomy of robot was reflected in a diversified manner in the existing studies, ranging from the muscular guy—robotic manipulator—to the dexterous ones—unmanned aerial vehicle, autonomous mobile robot, automated guided vehicle, autonomous construction machinery and quadruped robot. In addition, the existing studies have provided substantial evidence to reveal the robotic technologies' effectiveness against traditional human methods in construction scenarios, and the measures for effectiveness consisted of productivity, precision, and success rate. With the evidence, it seems that the construction sector could benefit from robotic technologies to achieve intelligent workflows. Furthermore, based on the existing knowledge foundation in the current literature, a theoretical framework for future research direction is proposed. The framework envisages the integration of large models with construction robots to address operational inefficiencies, reduce costs, and simplify management.
期刊介绍:
The Journal of Field Robotics seeks to promote scholarly publications dealing with the fundamentals of robotics in unstructured and dynamic environments.
The Journal focuses on experimental robotics and encourages publication of work that has both theoretical and practical significance.