ψ$$ \psi $$-Bernstein-Kantorovich 算子

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Hüseyin Aktuğlu, Mustafa Kara, Erdem Baytunç
{"title":"ψ$$ \\psi $$-Bernstein-Kantorovich 算子","authors":"Hüseyin Aktuğlu, Mustafa Kara, Erdem Baytunç","doi":"10.1002/mma.10375","DOIUrl":null,"url":null,"abstract":"In this article, we introduce a modified class of Bernstein–Kantorovich operators depending on an integrable function and investigate their approximation properties. By choosing an appropriate function , the order of approximation of our operators to a function is at least as good as the classical Bernstein–Kantorovich operators on the interval . We compared the operators defined in this study not only with Bernstein–Kantorovich operators but also with some other Bernstein–Kantorovich type operators. In this paper, we also study the results on the uniform convergence and rate of convergence of these operators in terms of the first‐ and second‐order moduli of continuity, and we prove that our operators have shape‐preserving properties. Finally, some numerical examples which support the results obtained in this paper are provided.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ψ$$ \\\\psi $$‐Bernstein–Kantorovich operators\",\"authors\":\"Hüseyin Aktuğlu, Mustafa Kara, Erdem Baytunç\",\"doi\":\"10.1002/mma.10375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we introduce a modified class of Bernstein–Kantorovich operators depending on an integrable function and investigate their approximation properties. By choosing an appropriate function , the order of approximation of our operators to a function is at least as good as the classical Bernstein–Kantorovich operators on the interval . We compared the operators defined in this study not only with Bernstein–Kantorovich operators but also with some other Bernstein–Kantorovich type operators. In this paper, we also study the results on the uniform convergence and rate of convergence of these operators in terms of the first‐ and second‐order moduli of continuity, and we prove that our operators have shape‐preserving properties. Finally, some numerical examples which support the results obtained in this paper are provided.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/mma.10375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/mma.10375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们介绍了一类取决于可积分函数的改进伯恩斯坦-康托洛维奇算子,并研究了它们的近似性质。通过选择一个合适的函数,我们的算子对函数的逼近阶数至少与区间上的经典伯恩斯坦-康托洛维奇算子一样好。我们不仅将本研究中定义的算子与伯恩斯坦-康托洛维奇算子进行了比较,还将其与其他一些伯恩斯坦-康托洛维奇类型的算子进行了比较。本文还研究了这些算子在一阶和二阶连续性模量方面的均匀收敛性和收敛速率,并证明了我们的算子具有保形特性。最后,我们还提供了一些支持本文所获结果的数值示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ψ$$ \psi $$‐Bernstein–Kantorovich operators
In this article, we introduce a modified class of Bernstein–Kantorovich operators depending on an integrable function and investigate their approximation properties. By choosing an appropriate function , the order of approximation of our operators to a function is at least as good as the classical Bernstein–Kantorovich operators on the interval . We compared the operators defined in this study not only with Bernstein–Kantorovich operators but also with some other Bernstein–Kantorovich type operators. In this paper, we also study the results on the uniform convergence and rate of convergence of these operators in terms of the first‐ and second‐order moduli of continuity, and we prove that our operators have shape‐preserving properties. Finally, some numerical examples which support the results obtained in this paper are provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信