Xinrui Zhu, Yaowen Hu, Shengyuan Lu, Hana K. Warner, Xudong Li, Yunxiang Song, Letícia Magalhães, Amirhassan Shams-Ansari, Andrea Cordaro, Neil Sinclair, Marko Lončar
{"title":"铌酸锂薄膜上的 2,900 万个本征 Q 因子单片微谐振器","authors":"Xinrui Zhu, Yaowen Hu, Shengyuan Lu, Hana K. Warner, Xudong Li, Yunxiang Song, Letícia Magalhães, Amirhassan Shams-Ansari, Andrea Cordaro, Neil Sinclair, Marko Lončar","doi":"10.1364/prj.521172","DOIUrl":null,"url":null,"abstract":"The recent emergence of thin-film lithium niobate (TFLN) has extended the landscape of integrated photonics. This has been enabled by the commercialization of TFLN wafers and advanced nanofabrication of TFLN such as high-quality dry etching. However, fabrication imperfections still limit the propagation loss to a few dB/m, restricting the impact of this platform. Here, we demonstrate TFLN microresonators with a record-high intrinsic quality (<jats:italic>Q</jats:italic>) factor of twenty-nine million, corresponding to an ultra-low propagation loss of 1.3 dB/m. We present spectral analysis and the statistical distribution of <jats:italic>Q</jats:italic> factors across different resonator geometries. Our work pushes the fabrication limits of TFLN photonics to achieve a <jats:italic>Q</jats:italic> factor within 1 order of magnitude of the material limit.","PeriodicalId":20048,"journal":{"name":"Photonics Research","volume":"104 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Twenty-nine million intrinsic Q-factor monolithic microresonators on thin-film lithium niobate\",\"authors\":\"Xinrui Zhu, Yaowen Hu, Shengyuan Lu, Hana K. Warner, Xudong Li, Yunxiang Song, Letícia Magalhães, Amirhassan Shams-Ansari, Andrea Cordaro, Neil Sinclair, Marko Lončar\",\"doi\":\"10.1364/prj.521172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recent emergence of thin-film lithium niobate (TFLN) has extended the landscape of integrated photonics. This has been enabled by the commercialization of TFLN wafers and advanced nanofabrication of TFLN such as high-quality dry etching. However, fabrication imperfections still limit the propagation loss to a few dB/m, restricting the impact of this platform. Here, we demonstrate TFLN microresonators with a record-high intrinsic quality (<jats:italic>Q</jats:italic>) factor of twenty-nine million, corresponding to an ultra-low propagation loss of 1.3 dB/m. We present spectral analysis and the statistical distribution of <jats:italic>Q</jats:italic> factors across different resonator geometries. Our work pushes the fabrication limits of TFLN photonics to achieve a <jats:italic>Q</jats:italic> factor within 1 order of magnitude of the material limit.\",\"PeriodicalId\":20048,\"journal\":{\"name\":\"Photonics Research\",\"volume\":\"104 1\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics Research\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/prj.521172\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/prj.521172","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Twenty-nine million intrinsic Q-factor monolithic microresonators on thin-film lithium niobate
The recent emergence of thin-film lithium niobate (TFLN) has extended the landscape of integrated photonics. This has been enabled by the commercialization of TFLN wafers and advanced nanofabrication of TFLN such as high-quality dry etching. However, fabrication imperfections still limit the propagation loss to a few dB/m, restricting the impact of this platform. Here, we demonstrate TFLN microresonators with a record-high intrinsic quality (Q) factor of twenty-nine million, corresponding to an ultra-low propagation loss of 1.3 dB/m. We present spectral analysis and the statistical distribution of Q factors across different resonator geometries. Our work pushes the fabrication limits of TFLN photonics to achieve a Q factor within 1 order of magnitude of the material limit.
期刊介绍:
Photonics Research is a joint publishing effort of the OSA and Chinese Laser Press.It publishes fundamental and applied research progress in optics and photonics. Topics include, but are not limited to, lasers, LEDs and other light sources; fiber optics and optical communications; imaging, detectors and sensors; novel materials and engineered structures; optical data storage and displays; plasmonics; quantum optics; diffractive optics and guided optics; medical optics and biophotonics; ultraviolet and x-rays; terahertz technology.