{"title":"集成光子分数卷积加速器","authors":"Kevin Zelaya, Mohammed-Ali Miri","doi":"10.1364/prj.517491","DOIUrl":null,"url":null,"abstract":"An integrated photonic circuit architecture to perform a modified-convolution operation based on the discrete fractional Fourier transform (DFrFT) is introduced. This is accomplished by utilizing two nonuniformly coupled waveguide lattices with equally spaced eigenmode spectra, the lengths of which are chosen so that the DFrFT and its inverse operations are achieved. A programmable modulator array is interlaced so that the required fractional convolution operation is performed. Numerical simulations demonstrate that the proposed architecture can effectively perform smoothing and edge detection tasks even for noisy input signals, which is further verified by electromagnetic wave simulations. Notably, mild lattice defects do not jeopardize the architecture performance, showing its resilience to manufacturing errors.","PeriodicalId":20048,"journal":{"name":"Photonics Research","volume":"20 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated photonic fractional convolution accelerator\",\"authors\":\"Kevin Zelaya, Mohammed-Ali Miri\",\"doi\":\"10.1364/prj.517491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An integrated photonic circuit architecture to perform a modified-convolution operation based on the discrete fractional Fourier transform (DFrFT) is introduced. This is accomplished by utilizing two nonuniformly coupled waveguide lattices with equally spaced eigenmode spectra, the lengths of which are chosen so that the DFrFT and its inverse operations are achieved. A programmable modulator array is interlaced so that the required fractional convolution operation is performed. Numerical simulations demonstrate that the proposed architecture can effectively perform smoothing and edge detection tasks even for noisy input signals, which is further verified by electromagnetic wave simulations. Notably, mild lattice defects do not jeopardize the architecture performance, showing its resilience to manufacturing errors.\",\"PeriodicalId\":20048,\"journal\":{\"name\":\"Photonics Research\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics Research\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/prj.517491\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/prj.517491","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
An integrated photonic circuit architecture to perform a modified-convolution operation based on the discrete fractional Fourier transform (DFrFT) is introduced. This is accomplished by utilizing two nonuniformly coupled waveguide lattices with equally spaced eigenmode spectra, the lengths of which are chosen so that the DFrFT and its inverse operations are achieved. A programmable modulator array is interlaced so that the required fractional convolution operation is performed. Numerical simulations demonstrate that the proposed architecture can effectively perform smoothing and edge detection tasks even for noisy input signals, which is further verified by electromagnetic wave simulations. Notably, mild lattice defects do not jeopardize the architecture performance, showing its resilience to manufacturing errors.
期刊介绍:
Photonics Research is a joint publishing effort of the OSA and Chinese Laser Press.It publishes fundamental and applied research progress in optics and photonics. Topics include, but are not limited to, lasers, LEDs and other light sources; fiber optics and optical communications; imaging, detectors and sensors; novel materials and engineered structures; optical data storage and displays; plasmonics; quantum optics; diffractive optics and guided optics; medical optics and biophotonics; ultraviolet and x-rays; terahertz technology.