超薄金纳米带阵列中等离子共振的电调谐

IF 6.6 1区 物理与天体物理 Q1 OPTICS
Zhenxin Wang, Alexey V. Krasavin, Chenxinyu Pan, Junsheng Zheng, Zhiyong Li, Xin Guo, Anatoly V. Zayats, Limin Tong, Pan Wang
{"title":"超薄金纳米带阵列中等离子共振的电调谐","authors":"Zhenxin Wang, Alexey V. Krasavin, Chenxinyu Pan, Junsheng Zheng, Zhiyong Li, Xin Guo, Anatoly V. Zayats, Limin Tong, Pan Wang","doi":"10.1364/prj.522533","DOIUrl":null,"url":null,"abstract":"Ultrathin plasmonic nanostructures offer an unparalleled opportunity for the study of light–matter interactions at the nanoscale and realization of compact nanophotonic devices. In this study, we introduce an ultrathin gold nanoribbon array and demonstrate an electric approach to actively tuning its plasmonic resonance, which leveraging the extreme light confinement capability in the ultrathin plasmonic nanostructure and a robust nanoscale electro-optical effect in indium tin oxide. Optimizing the design (to a total thickness as small as 12 nm for a 2-nm-thick gold nanoribbon array), we numerically demonstrate a spectral shift in the plasmonic resonance up to 36 nm along with an approximately 16% change in the transmission at a gate voltage below 1.7 V at the wavelength of 1.47 μm. This work presents progress towards electric tuning of plasmonic resonances in ultrathin metallic nanostructures for various applications including surface-enhanced spectroscopy, spontaneous emission enhancement, and optical modulation.","PeriodicalId":20048,"journal":{"name":"Photonics Research","volume":"77 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electric tuning of plasmonic resonances in ultrathin gold nanoribbon arrays\",\"authors\":\"Zhenxin Wang, Alexey V. Krasavin, Chenxinyu Pan, Junsheng Zheng, Zhiyong Li, Xin Guo, Anatoly V. Zayats, Limin Tong, Pan Wang\",\"doi\":\"10.1364/prj.522533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultrathin plasmonic nanostructures offer an unparalleled opportunity for the study of light–matter interactions at the nanoscale and realization of compact nanophotonic devices. In this study, we introduce an ultrathin gold nanoribbon array and demonstrate an electric approach to actively tuning its plasmonic resonance, which leveraging the extreme light confinement capability in the ultrathin plasmonic nanostructure and a robust nanoscale electro-optical effect in indium tin oxide. Optimizing the design (to a total thickness as small as 12 nm for a 2-nm-thick gold nanoribbon array), we numerically demonstrate a spectral shift in the plasmonic resonance up to 36 nm along with an approximately 16% change in the transmission at a gate voltage below 1.7 V at the wavelength of 1.47 μm. This work presents progress towards electric tuning of plasmonic resonances in ultrathin metallic nanostructures for various applications including surface-enhanced spectroscopy, spontaneous emission enhancement, and optical modulation.\",\"PeriodicalId\":20048,\"journal\":{\"name\":\"Photonics Research\",\"volume\":\"77 1\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics Research\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/prj.522533\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/prj.522533","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

超薄等离子纳米结构为研究纳米尺度的光物质相互作用和实现紧凑型纳米光子器件提供了无与伦比的机会。在这项研究中,我们介绍了一种超薄金纳米带阵列,并展示了一种主动调谐其等离子共振的电学方法,这种方法利用了超薄等离子纳米结构中的极强光束约束能力和氧化铟锡中稳健的纳米级电光效应。通过优化设计(将 2 纳米厚的金纳米带阵列的总厚度减小到 12 纳米),我们从数值上证明,在波长为 1.47 μm 的情况下,栅极电压低于 1.7 V 时,等离子共振的光谱偏移可达 36 纳米,透射率变化约为 16%。这项工作展示了在超薄金属纳米结构中对等离子共振进行电调谐以实现各种应用(包括表面增强光谱学、自发辐射增强和光学调制)方面取得的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electric tuning of plasmonic resonances in ultrathin gold nanoribbon arrays
Ultrathin plasmonic nanostructures offer an unparalleled opportunity for the study of light–matter interactions at the nanoscale and realization of compact nanophotonic devices. In this study, we introduce an ultrathin gold nanoribbon array and demonstrate an electric approach to actively tuning its plasmonic resonance, which leveraging the extreme light confinement capability in the ultrathin plasmonic nanostructure and a robust nanoscale electro-optical effect in indium tin oxide. Optimizing the design (to a total thickness as small as 12 nm for a 2-nm-thick gold nanoribbon array), we numerically demonstrate a spectral shift in the plasmonic resonance up to 36 nm along with an approximately 16% change in the transmission at a gate voltage below 1.7 V at the wavelength of 1.47 μm. This work presents progress towards electric tuning of plasmonic resonances in ultrathin metallic nanostructures for various applications including surface-enhanced spectroscopy, spontaneous emission enhancement, and optical modulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
13.60
自引率
5.30%
发文量
1325
期刊介绍: Photonics Research is a joint publishing effort of the OSA and Chinese Laser Press.It publishes fundamental and applied research progress in optics and photonics. Topics include, but are not limited to, lasers, LEDs and other light sources; fiber optics and optical communications; imaging, detectors and sensors; novel materials and engineered structures; optical data storage and displays; plasmonics; quantum optics; diffractive optics and guided optics; medical optics and biophotonics; ultraviolet and x-rays; terahertz technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信