受控非稳态谐波流干扰源

IF 0.5 4区 工程技术 Q4 ENGINEERING, AEROSPACE
T. A. Gimon, D. A. Elistratov, A. D. Zhelonkin, S. V. Lukashevich, S. O. Morozov, A. N. Shiplyuk
{"title":"受控非稳态谐波流干扰源","authors":"T. A. Gimon,&nbsp;D. A. Elistratov,&nbsp;A. D. Zhelonkin,&nbsp;S. V. Lukashevich,&nbsp;S. O. Morozov,&nbsp;A. N. Shiplyuk","doi":"10.1134/S0869864324010049","DOIUrl":null,"url":null,"abstract":"<div><p>The flow in the vicinity of the source of controlled harmonic non-stationary perturbations of a gas medium, applicable for generating Görtler vortices in a compressible boundary layer, is studied. The source has a flat surface with linearly arranged cylindrical channels, leading alternately to two cavities of variable volume. Various configurations of the source are considered: with separate channel outlet openings and with a slit opening above them. Numerical simulation is performed in the Solid Works Flow Simulation package, and experimental measurement of gas velocity is realized by the PIV method. The developed source is shown to create periodic velocity fluctuations with an amplitude of up to 2 m/s at a frequency of 1 kHz near the surface. The shapes of the profiles of velocity normal to the surface along the source are close to sinusoidal in both time and space.</p></div>","PeriodicalId":800,"journal":{"name":"Thermophysics and Aeromechanics","volume":"31 1","pages":"37 - 48"},"PeriodicalIF":0.5000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A source of controlled nonstationary harmonic flow disturbances\",\"authors\":\"T. A. Gimon,&nbsp;D. A. Elistratov,&nbsp;A. D. Zhelonkin,&nbsp;S. V. Lukashevich,&nbsp;S. O. Morozov,&nbsp;A. N. Shiplyuk\",\"doi\":\"10.1134/S0869864324010049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The flow in the vicinity of the source of controlled harmonic non-stationary perturbations of a gas medium, applicable for generating Görtler vortices in a compressible boundary layer, is studied. The source has a flat surface with linearly arranged cylindrical channels, leading alternately to two cavities of variable volume. Various configurations of the source are considered: with separate channel outlet openings and with a slit opening above them. Numerical simulation is performed in the Solid Works Flow Simulation package, and experimental measurement of gas velocity is realized by the PIV method. The developed source is shown to create periodic velocity fluctuations with an amplitude of up to 2 m/s at a frequency of 1 kHz near the surface. The shapes of the profiles of velocity normal to the surface along the source are close to sinusoidal in both time and space.</p></div>\",\"PeriodicalId\":800,\"journal\":{\"name\":\"Thermophysics and Aeromechanics\",\"volume\":\"31 1\",\"pages\":\"37 - 48\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thermophysics and Aeromechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0869864324010049\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermophysics and Aeromechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0869864324010049","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

研究了气体介质受控谐波非稳态扰动源附近的流动情况,该扰动源适用于在可压缩边界层中产生哥特勒涡旋。扰动源有一个平面,上面有线性排列的圆柱形通道,交替通向两个体积可变的空腔。考虑了源的各种配置:单独的通道出口开口和在其上方的狭缝开口。数值模拟在 Solid Works Flow Simulation 软件包中进行,气体速度的实验测量通过 PIV 方法实现。实验结果表明,所开发的气源可在表面附近以 1 kHz 的频率产生振幅高达 2 m/s 的周期性速度波动。沿源表面法线方向的速度剖面在时间和空间上都接近正弦曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A source of controlled nonstationary harmonic flow disturbances

The flow in the vicinity of the source of controlled harmonic non-stationary perturbations of a gas medium, applicable for generating Görtler vortices in a compressible boundary layer, is studied. The source has a flat surface with linearly arranged cylindrical channels, leading alternately to two cavities of variable volume. Various configurations of the source are considered: with separate channel outlet openings and with a slit opening above them. Numerical simulation is performed in the Solid Works Flow Simulation package, and experimental measurement of gas velocity is realized by the PIV method. The developed source is shown to create periodic velocity fluctuations with an amplitude of up to 2 m/s at a frequency of 1 kHz near the surface. The shapes of the profiles of velocity normal to the surface along the source are close to sinusoidal in both time and space.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Thermophysics and Aeromechanics
Thermophysics and Aeromechanics THERMODYNAMICS-MECHANICS
CiteScore
0.90
自引率
40.00%
发文量
29
审稿时长
>12 weeks
期刊介绍: The journal Thermophysics and Aeromechanics publishes original reports, reviews, and discussions on the following topics: hydrogasdynamics, heat and mass transfer, turbulence, means and methods of aero- and thermophysical experiment, physics of low-temperature plasma, and physical and technical problems of energetics. These topics are the prior fields of investigation at the Institute of Thermophysics and the Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences (SB RAS), which are the founders of the journal along with SB RAS. This publication promotes an exchange of information between the researchers of Russia and the international scientific community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信