利用三维建模和随机森林预测深部矿藏潜力:中国西藏熊村斑岩型铜金矿床案例研究

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yuming Lou, Xinghai Lang, Xu Kang, Jiansheng Gong, Kai Jiang, Shirong Dou, Difei Zhou, Zhaoshuai Wang, Shuyue He
{"title":"利用三维建模和随机森林预测深部矿藏潜力:中国西藏熊村斑岩型铜金矿床案例研究","authors":"Yuming Lou, Xinghai Lang, Xu Kang, Jiansheng Gong, Kai Jiang, Shirong Dou, Difei Zhou, Zhaoshuai Wang, Shuyue He","doi":"10.1007/s11004-024-10151-8","DOIUrl":null,"url":null,"abstract":"<p>The chances of discovering hidden deposits are higher when exploring deeper into known deposits or historic mines, compared to broad-scale regional exploration. Machine learning algorithms and three-dimensional modeling can effectively identify deep targets and provide quantitative predictions of potential resources. This research paper presents a proposed workflow that utilizes random forest algorithms and a three-dimensional model incorporating geological factors such as strata, lithology, alteration, and primary halo to enhance the accuracy of exploration predictions. The study involved collecting 7949 rock samples from 34 boreholes in eight exploration lines at the Xiongcun No. 2 deposit, and performing geochemical analysis calculations on 18 elements. The methodologies employed can be summarized as follows: (1) establishing and preprocessing the geological dataset of the Xiongcun No. 2 deposit, followed by multivariate statistical analysis, (2) delineating primary halo zoning sequences to identify potential mineralization at greater depths, (3) constructing three-dimensional models incorporating geological and geochemical mineralization information, and (4) utilizing the random forest algorithm to extract exploration criteria and quantitatively predict deep exploration targets. The results indicate a significant mineralization located 300 m to the west–northwest of the No. 2 deposit, within the downward extension of the control depth. The three-dimensional model of the target volume reveals the presence of approximately 0.33 million tons of copper (Cu), 7.6 tons of gold (Au), and 22.8 tons of silver (Ag).</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Three-dimensional Modeling and Random Forests to Predict Deep Ore Potentials: A Case Study on Xiongcun Porphyry Copper–Gold Deposit in Tibet, China\",\"authors\":\"Yuming Lou, Xinghai Lang, Xu Kang, Jiansheng Gong, Kai Jiang, Shirong Dou, Difei Zhou, Zhaoshuai Wang, Shuyue He\",\"doi\":\"10.1007/s11004-024-10151-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The chances of discovering hidden deposits are higher when exploring deeper into known deposits or historic mines, compared to broad-scale regional exploration. Machine learning algorithms and three-dimensional modeling can effectively identify deep targets and provide quantitative predictions of potential resources. This research paper presents a proposed workflow that utilizes random forest algorithms and a three-dimensional model incorporating geological factors such as strata, lithology, alteration, and primary halo to enhance the accuracy of exploration predictions. The study involved collecting 7949 rock samples from 34 boreholes in eight exploration lines at the Xiongcun No. 2 deposit, and performing geochemical analysis calculations on 18 elements. The methodologies employed can be summarized as follows: (1) establishing and preprocessing the geological dataset of the Xiongcun No. 2 deposit, followed by multivariate statistical analysis, (2) delineating primary halo zoning sequences to identify potential mineralization at greater depths, (3) constructing three-dimensional models incorporating geological and geochemical mineralization information, and (4) utilizing the random forest algorithm to extract exploration criteria and quantitatively predict deep exploration targets. The results indicate a significant mineralization located 300 m to the west–northwest of the No. 2 deposit, within the downward extension of the control depth. The three-dimensional model of the target volume reveals the presence of approximately 0.33 million tons of copper (Cu), 7.6 tons of gold (Au), and 22.8 tons of silver (Ag).</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s11004-024-10151-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11004-024-10151-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

与大范围的区域勘探相比,深入已知矿藏或历史矿山勘探发现隐藏矿藏的几率更高。机器学习算法和三维建模可以有效识别深部目标,并对潜在资源进行定量预测。本研究论文介绍了一种拟议的工作流程,该流程利用随机森林算法和三维模型,结合地层、岩性、蚀变和原生晕等地质因素,提高勘探预测的准确性。该研究从熊村 2 号矿床 8 条勘探线的 34 个钻孔中采集了 7949 个岩石样本,并对 18 种元素进行了地球化学分析计算。所采用的方法可归纳如下:(1) 建立和预处理熊村 2 号矿床的地质数据集,然后进行多元统计分析;(2) 划分原生晕带序,以确定更大深度的潜在矿化;(3) 结合地质和地球化学成矿信息构建三维模型;(4) 利用随机森林算法提取勘探标准,定量预测深部勘探目标。结果表明,在 2 号矿床西北偏西 300 米处,控制深度向下延伸范围内有一处重要矿化物。目标区域的三维模型显示,该区域存在约 33 万吨铜(Cu)、7.6 吨金(Au)和 22.8 吨银(Ag)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Using Three-dimensional Modeling and Random Forests to Predict Deep Ore Potentials: A Case Study on Xiongcun Porphyry Copper–Gold Deposit in Tibet, China

Using Three-dimensional Modeling and Random Forests to Predict Deep Ore Potentials: A Case Study on Xiongcun Porphyry Copper–Gold Deposit in Tibet, China

The chances of discovering hidden deposits are higher when exploring deeper into known deposits or historic mines, compared to broad-scale regional exploration. Machine learning algorithms and three-dimensional modeling can effectively identify deep targets and provide quantitative predictions of potential resources. This research paper presents a proposed workflow that utilizes random forest algorithms and a three-dimensional model incorporating geological factors such as strata, lithology, alteration, and primary halo to enhance the accuracy of exploration predictions. The study involved collecting 7949 rock samples from 34 boreholes in eight exploration lines at the Xiongcun No. 2 deposit, and performing geochemical analysis calculations on 18 elements. The methodologies employed can be summarized as follows: (1) establishing and preprocessing the geological dataset of the Xiongcun No. 2 deposit, followed by multivariate statistical analysis, (2) delineating primary halo zoning sequences to identify potential mineralization at greater depths, (3) constructing three-dimensional models incorporating geological and geochemical mineralization information, and (4) utilizing the random forest algorithm to extract exploration criteria and quantitatively predict deep exploration targets. The results indicate a significant mineralization located 300 m to the west–northwest of the No. 2 deposit, within the downward extension of the control depth. The three-dimensional model of the target volume reveals the presence of approximately 0.33 million tons of copper (Cu), 7.6 tons of gold (Au), and 22.8 tons of silver (Ag).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信