利用混合和堆栈的深度学习架构预测老挝每周登革热病例

IF 1.6 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Sathi Patra, Soovoojeet Jana, Sayani Adak, T. K. Kar
{"title":"利用混合和堆栈的深度学习架构预测老挝每周登革热病例","authors":"Sathi Patra,&nbsp;Soovoojeet Jana,&nbsp;Sayani Adak,&nbsp;T. K. Kar","doi":"10.1140/epjb/s10051-024-00752-x","DOIUrl":null,"url":null,"abstract":"<p>Dengue is an arthropod-borne viral disease prevalent in tropical and subtropical regions. Its adverse impact on human health and the global economy cannot be exaggerated. To improve the efficacy of vector control measures, there is a critical need for mechanisms that can forecast dengue cases with greater accuracy and urgency than before. So, we employ some deep learning techniques using the previous ten years of weekly dengue cases in Laos. A hybrid model combining CNN and stacked LSTM (BiLSTM) is applied along with CNN, LSTM, BiLSTM, and ConvLSTM in this work. Comparing all the outputs we have derived, hybrid CNN and 1 stacked BiLSTM outperform other deep learning models with the one-step-ahead prediction. Further, we have concluded that hybrid CNN and 1 stacked BiLSTM can considerably boost dengue prediction and can be applied in other dengue-prone regions.</p>","PeriodicalId":787,"journal":{"name":"The European Physical Journal B","volume":"97 8","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A deep learning architecture using hybrid and stacks to forecast weekly dengue cases in Laos\",\"authors\":\"Sathi Patra,&nbsp;Soovoojeet Jana,&nbsp;Sayani Adak,&nbsp;T. K. Kar\",\"doi\":\"10.1140/epjb/s10051-024-00752-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Dengue is an arthropod-borne viral disease prevalent in tropical and subtropical regions. Its adverse impact on human health and the global economy cannot be exaggerated. To improve the efficacy of vector control measures, there is a critical need for mechanisms that can forecast dengue cases with greater accuracy and urgency than before. So, we employ some deep learning techniques using the previous ten years of weekly dengue cases in Laos. A hybrid model combining CNN and stacked LSTM (BiLSTM) is applied along with CNN, LSTM, BiLSTM, and ConvLSTM in this work. Comparing all the outputs we have derived, hybrid CNN and 1 stacked BiLSTM outperform other deep learning models with the one-step-ahead prediction. Further, we have concluded that hybrid CNN and 1 stacked BiLSTM can considerably boost dengue prediction and can be applied in other dengue-prone regions.</p>\",\"PeriodicalId\":787,\"journal\":{\"name\":\"The European Physical Journal B\",\"volume\":\"97 8\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal B\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjb/s10051-024-00752-x\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjb/s10051-024-00752-x","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

摘要 登革热是一种由节肢动物传播的病毒性疾病,流行于热带和亚热带地区。它对人类健康和全球经济的不利影响怎么强调都不为过。为了提高病媒控制措施的效率,亟需建立能比以往更准确、更紧急地预测登革热病例的机制。因此,我们利用老挝过去十年的每周登革热病例,采用了一些深度学习技术。在这项工作中,我们采用了 CNN 与堆叠 LSTM(BiLSTM)相结合的混合模型,以及 CNN、LSTM、BiLSTM 和 ConvLSTM。比较我们得出的所有输出结果,混合 CNN 和 1 个堆栈式 BiLSTM 在提前一步预测方面优于其他深度学习模型。此外,我们还得出结论,混合 CNN 和 1 个堆叠 BiLSTM 可以大大提高登革热预测能力,并可应用于其他登革热多发地区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A deep learning architecture using hybrid and stacks to forecast weekly dengue cases in Laos

A deep learning architecture using hybrid and stacks to forecast weekly dengue cases in Laos

Dengue is an arthropod-borne viral disease prevalent in tropical and subtropical regions. Its adverse impact on human health and the global economy cannot be exaggerated. To improve the efficacy of vector control measures, there is a critical need for mechanisms that can forecast dengue cases with greater accuracy and urgency than before. So, we employ some deep learning techniques using the previous ten years of weekly dengue cases in Laos. A hybrid model combining CNN and stacked LSTM (BiLSTM) is applied along with CNN, LSTM, BiLSTM, and ConvLSTM in this work. Comparing all the outputs we have derived, hybrid CNN and 1 stacked BiLSTM outperform other deep learning models with the one-step-ahead prediction. Further, we have concluded that hybrid CNN and 1 stacked BiLSTM can considerably boost dengue prediction and can be applied in other dengue-prone regions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal B
The European Physical Journal B 物理-物理:凝聚态物理
CiteScore
2.80
自引率
6.20%
发文量
184
审稿时长
5.1 months
期刊介绍: Solid State and Materials; Mesoscopic and Nanoscale Systems; Computational Methods; Statistical and Nonlinear Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信