基于荧光共振能量转移的简易光传感器用于快速检测水中和食品中的镉(II)含量

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jiangxiong Zhu, Yang Wang, Lumei Wang, Xueqing Geng, Linnan Yang, Ting Zhao, Yun Deng
{"title":"基于荧光共振能量转移的简易光传感器用于快速检测水中和食品中的镉(II)含量","authors":"Jiangxiong Zhu, Yang Wang, Lumei Wang, Xueqing Geng, Linnan Yang, Ting Zhao, Yun Deng","doi":"10.2174/0115734110319398240715050604","DOIUrl":null,"url":null,"abstract":"Objective: The objective of this study is to develop a novel fluorometric aptasensor employing fluorescence resonance energy transfer (FRET) for the detection of Cadmium (II) (Cd2+) in water and food samples. The constructed aptasensor employed a fluorophore-quencher labeled aptamer combination not previously reported for Cd2+ detection. Additionally, its simple mix-anddetect pattern without immobilization or material-assisted steps represented an innovative design. Methods: Utilizing 6-carboxyfluorescein (FAM)-modified aptamers and maleimide (BHQ-1)- modified aptamer complementary chain to construct a fluorescent detection probe, this aptasensor achieved a rapid, sensitive, and selective detection of Cd2+. Without Cd2+, the aptamer and its complementary strand undergo base pairing, bringing the FAM closer to the BHQ-1, leading to FRET and a subsequent decrease in fluorescence intensity. The introduction of Cd2+ preferentially brought to the aptamer, changing its conformation and preventing the quenching of FAM by BHQ-1, thereby restoring the fluorescence intensity of the aptasensor. Results: Following optimization of experimental parameters, the aptasensor exhibited a linear response to Cd2+ concentrations ranging from 5 to 1200 nM, with a detection limit (LOD) of 0.43 nM. The aptasensor’s performance was unaffected by the presence of various ions, indicating its high specificity. Moreover, it could rapidly and accurately detect Cd2+ in water and food samples, including tap water, lake water, grapes, cabbage, and broccoli, demonstrating its substantial potential for practical application. Conclusion: Therefore, the developed aptasensor represents an important tool for effective Cd2+ detection in water and food matrices, highlighting its potential as a critical tool for environmental monitoring and food safety.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Simple Aptasensor Based on Fluorescence Resonance Energy Transfer for the Rapid Detection of Cadmium (II) In Water And Food\",\"authors\":\"Jiangxiong Zhu, Yang Wang, Lumei Wang, Xueqing Geng, Linnan Yang, Ting Zhao, Yun Deng\",\"doi\":\"10.2174/0115734110319398240715050604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective: The objective of this study is to develop a novel fluorometric aptasensor employing fluorescence resonance energy transfer (FRET) for the detection of Cadmium (II) (Cd2+) in water and food samples. The constructed aptasensor employed a fluorophore-quencher labeled aptamer combination not previously reported for Cd2+ detection. Additionally, its simple mix-anddetect pattern without immobilization or material-assisted steps represented an innovative design. Methods: Utilizing 6-carboxyfluorescein (FAM)-modified aptamers and maleimide (BHQ-1)- modified aptamer complementary chain to construct a fluorescent detection probe, this aptasensor achieved a rapid, sensitive, and selective detection of Cd2+. Without Cd2+, the aptamer and its complementary strand undergo base pairing, bringing the FAM closer to the BHQ-1, leading to FRET and a subsequent decrease in fluorescence intensity. The introduction of Cd2+ preferentially brought to the aptamer, changing its conformation and preventing the quenching of FAM by BHQ-1, thereby restoring the fluorescence intensity of the aptasensor. Results: Following optimization of experimental parameters, the aptasensor exhibited a linear response to Cd2+ concentrations ranging from 5 to 1200 nM, with a detection limit (LOD) of 0.43 nM. The aptasensor’s performance was unaffected by the presence of various ions, indicating its high specificity. Moreover, it could rapidly and accurately detect Cd2+ in water and food samples, including tap water, lake water, grapes, cabbage, and broccoli, demonstrating its substantial potential for practical application. Conclusion: Therefore, the developed aptasensor represents an important tool for effective Cd2+ detection in water and food matrices, highlighting its potential as a critical tool for environmental monitoring and food safety.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.2174/0115734110319398240715050604\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/0115734110319398240715050604","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究目的本研究旨在利用荧光共振能量转移(FRET)技术开发一种新型荧光测定适配传感器,用于检测水和食品样品中的镉(II)(Cd2+)。所构建的适配传感器采用了一种荧光团-淬灭剂标记的适配体组合,这是以前从未报道过的用于 Cd2+ 检测的方法。此外,这种简单的混合检测模式无需固定或材料辅助步骤,是一种创新设计。方法:利用 6-羧基荧光素(FAM)修饰的适配体和马来酰亚胺(BHQ-1)修饰的适配体互补链构建荧光检测探针,该适配传感器实现了对 Cd2+ 的快速、灵敏和选择性检测。在没有 Cd2+ 的情况下,适配体及其互补链发生碱基配对,使 FAM 靠近 BHQ-1,从而产生 FRET,荧光强度随之降低。Cd2+ 的引入会优先作用于aptamer,改变其构象,阻止 BHQ-1 对 FAM 的淬灭,从而恢复aptasensor 的荧光强度。结果优化实验参数后,该适配体传感器对浓度为 5 至 1200 nM 的 Cd2+ 具有线性响应,检测限(LOD)为 0.43 nM。该传感器的性能不受各种离子的影响,这表明它具有很高的特异性。此外,它还能快速、准确地检测自来水、湖水、葡萄、卷心菜和西兰花等水和食物样品中的 Cd2+,显示了其巨大的实际应用潜力。结论因此,所开发的适配传感器是有效检测水和食品基质中 Cd2+ 的重要工具,凸显了其作为环境监测和食品安全重要工具的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Simple Aptasensor Based on Fluorescence Resonance Energy Transfer for the Rapid Detection of Cadmium (II) In Water And Food
Objective: The objective of this study is to develop a novel fluorometric aptasensor employing fluorescence resonance energy transfer (FRET) for the detection of Cadmium (II) (Cd2+) in water and food samples. The constructed aptasensor employed a fluorophore-quencher labeled aptamer combination not previously reported for Cd2+ detection. Additionally, its simple mix-anddetect pattern without immobilization or material-assisted steps represented an innovative design. Methods: Utilizing 6-carboxyfluorescein (FAM)-modified aptamers and maleimide (BHQ-1)- modified aptamer complementary chain to construct a fluorescent detection probe, this aptasensor achieved a rapid, sensitive, and selective detection of Cd2+. Without Cd2+, the aptamer and its complementary strand undergo base pairing, bringing the FAM closer to the BHQ-1, leading to FRET and a subsequent decrease in fluorescence intensity. The introduction of Cd2+ preferentially brought to the aptamer, changing its conformation and preventing the quenching of FAM by BHQ-1, thereby restoring the fluorescence intensity of the aptasensor. Results: Following optimization of experimental parameters, the aptasensor exhibited a linear response to Cd2+ concentrations ranging from 5 to 1200 nM, with a detection limit (LOD) of 0.43 nM. The aptasensor’s performance was unaffected by the presence of various ions, indicating its high specificity. Moreover, it could rapidly and accurately detect Cd2+ in water and food samples, including tap water, lake water, grapes, cabbage, and broccoli, demonstrating its substantial potential for practical application. Conclusion: Therefore, the developed aptasensor represents an important tool for effective Cd2+ detection in water and food matrices, highlighting its potential as a critical tool for environmental monitoring and food safety.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信