{"title":"钢包炼钢过程模拟:使用 FactSage 宏处理的有效平衡反应区模型","authors":"Prasenjit Singha, Abhishek Tiwari","doi":"10.1007/s11837-024-06766-1","DOIUrl":null,"url":null,"abstract":"<div><p>Approximately 10–15% of the world’s steel production is derived from small industries. While ladle furnaces contribute to maintaining a generally good quality of refined steel, new challenges arise, especially when striving for very low sulfur percentages in steel. To address this, the study explores the impact of process parameters such as aluminum, silicon, and basicity in reducing sulfur content. Three interconnected equilibrium/adiabatic stoichiometric-reactor-based approaches describe the overall ladle steel-making process. The macro-programming facility of FactSage™ software was used to determine the refining behaviors of the ladle steel-making processes. The model’s predicted endpoint, manganese, sulfur, oxygen, and aluminum content, agreed with plant data. This efficient model is a valuable guiding tool for ladle steelmaking industries with a 10–15 ton capacity.</p></div>","PeriodicalId":605,"journal":{"name":"JOM","volume":"76 10","pages":"6002 - 6009"},"PeriodicalIF":2.1000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of Ladle Steelmaking Process: Effective Equilibrium Reaction Zone Model Using FactSage Macro Processing\",\"authors\":\"Prasenjit Singha, Abhishek Tiwari\",\"doi\":\"10.1007/s11837-024-06766-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Approximately 10–15% of the world’s steel production is derived from small industries. While ladle furnaces contribute to maintaining a generally good quality of refined steel, new challenges arise, especially when striving for very low sulfur percentages in steel. To address this, the study explores the impact of process parameters such as aluminum, silicon, and basicity in reducing sulfur content. Three interconnected equilibrium/adiabatic stoichiometric-reactor-based approaches describe the overall ladle steel-making process. The macro-programming facility of FactSage™ software was used to determine the refining behaviors of the ladle steel-making processes. The model’s predicted endpoint, manganese, sulfur, oxygen, and aluminum content, agreed with plant data. This efficient model is a valuable guiding tool for ladle steelmaking industries with a 10–15 ton capacity.</p></div>\",\"PeriodicalId\":605,\"journal\":{\"name\":\"JOM\",\"volume\":\"76 10\",\"pages\":\"6002 - 6009\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOM\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11837-024-06766-1\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOM","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11837-024-06766-1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Simulation of Ladle Steelmaking Process: Effective Equilibrium Reaction Zone Model Using FactSage Macro Processing
Approximately 10–15% of the world’s steel production is derived from small industries. While ladle furnaces contribute to maintaining a generally good quality of refined steel, new challenges arise, especially when striving for very low sulfur percentages in steel. To address this, the study explores the impact of process parameters such as aluminum, silicon, and basicity in reducing sulfur content. Three interconnected equilibrium/adiabatic stoichiometric-reactor-based approaches describe the overall ladle steel-making process. The macro-programming facility of FactSage™ software was used to determine the refining behaviors of the ladle steel-making processes. The model’s predicted endpoint, manganese, sulfur, oxygen, and aluminum content, agreed with plant data. This efficient model is a valuable guiding tool for ladle steelmaking industries with a 10–15 ton capacity.
期刊介绍:
JOM is a technical journal devoted to exploring the many aspects of materials science and engineering. JOM reports scholarly work that explores the state-of-the-art processing, fabrication, design, and application of metals, ceramics, plastics, composites, and other materials. In pursuing this goal, JOM strives to balance the interests of the laboratory and the marketplace by reporting academic, industrial, and government-sponsored work from around the world.