钢包炼钢过程模拟:使用 FactSage 宏处理的有效平衡反应区模型

IF 2.1 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
JOM Pub Date : 2024-07-31 DOI:10.1007/s11837-024-06766-1
Prasenjit Singha, Abhishek Tiwari
{"title":"钢包炼钢过程模拟:使用 FactSage 宏处理的有效平衡反应区模型","authors":"Prasenjit Singha,&nbsp;Abhishek Tiwari","doi":"10.1007/s11837-024-06766-1","DOIUrl":null,"url":null,"abstract":"<div><p>Approximately 10–15% of the world’s steel production is derived from small industries. While ladle furnaces contribute to maintaining a generally good quality of refined steel, new challenges arise, especially when striving for very low sulfur percentages in steel. To address this, the study explores the impact of process parameters such as aluminum, silicon, and basicity in reducing sulfur content. Three interconnected equilibrium/adiabatic stoichiometric-reactor-based approaches describe the overall ladle steel-making process. The macro-programming facility of FactSage™ software was used to determine the refining behaviors of the ladle steel-making processes. The model’s predicted endpoint, manganese, sulfur, oxygen, and aluminum content, agreed with plant data. This efficient model is a valuable guiding tool for ladle steelmaking industries with a 10–15 ton capacity.</p></div>","PeriodicalId":605,"journal":{"name":"JOM","volume":"76 10","pages":"6002 - 6009"},"PeriodicalIF":2.1000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of Ladle Steelmaking Process: Effective Equilibrium Reaction Zone Model Using FactSage Macro Processing\",\"authors\":\"Prasenjit Singha,&nbsp;Abhishek Tiwari\",\"doi\":\"10.1007/s11837-024-06766-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Approximately 10–15% of the world’s steel production is derived from small industries. While ladle furnaces contribute to maintaining a generally good quality of refined steel, new challenges arise, especially when striving for very low sulfur percentages in steel. To address this, the study explores the impact of process parameters such as aluminum, silicon, and basicity in reducing sulfur content. Three interconnected equilibrium/adiabatic stoichiometric-reactor-based approaches describe the overall ladle steel-making process. The macro-programming facility of FactSage™ software was used to determine the refining behaviors of the ladle steel-making processes. The model’s predicted endpoint, manganese, sulfur, oxygen, and aluminum content, agreed with plant data. This efficient model is a valuable guiding tool for ladle steelmaking industries with a 10–15 ton capacity.</p></div>\",\"PeriodicalId\":605,\"journal\":{\"name\":\"JOM\",\"volume\":\"76 10\",\"pages\":\"6002 - 6009\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOM\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11837-024-06766-1\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOM","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11837-024-06766-1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

全球约有 10-15% 的钢铁产量来自小型企业。虽然钢包炉有助于保持精炼钢的总体良好质量,但新的挑战也随之而来,尤其是在努力降低钢中硫含量时。为此,本研究探讨了铝、硅和碱性等工艺参数对降低硫含量的影响。基于平衡/绝热化学计量反应器的三种相互关联的方法描述了整个钢包炼钢过程。FactSage™ 软件的宏编程功能用于确定钢包炼钢过程的精炼行为。模型预测的终点、锰、硫、氧和铝含量与工厂数据一致。这一高效模型对于产能为 10-15 吨的钢包炼钢行业来说是一个宝贵的指导工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Simulation of Ladle Steelmaking Process: Effective Equilibrium Reaction Zone Model Using FactSage Macro Processing

Simulation of Ladle Steelmaking Process: Effective Equilibrium Reaction Zone Model Using FactSage Macro Processing

Approximately 10–15% of the world’s steel production is derived from small industries. While ladle furnaces contribute to maintaining a generally good quality of refined steel, new challenges arise, especially when striving for very low sulfur percentages in steel. To address this, the study explores the impact of process parameters such as aluminum, silicon, and basicity in reducing sulfur content. Three interconnected equilibrium/adiabatic stoichiometric-reactor-based approaches describe the overall ladle steel-making process. The macro-programming facility of FactSage™ software was used to determine the refining behaviors of the ladle steel-making processes. The model’s predicted endpoint, manganese, sulfur, oxygen, and aluminum content, agreed with plant data. This efficient model is a valuable guiding tool for ladle steelmaking industries with a 10–15 ton capacity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JOM
JOM 工程技术-材料科学:综合
CiteScore
4.50
自引率
3.80%
发文量
540
审稿时长
2.8 months
期刊介绍: JOM is a technical journal devoted to exploring the many aspects of materials science and engineering. JOM reports scholarly work that explores the state-of-the-art processing, fabrication, design, and application of metals, ceramics, plastics, composites, and other materials. In pursuing this goal, JOM strives to balance the interests of the laboratory and the marketplace by reporting academic, industrial, and government-sponsored work from around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信