Daniel Buchner, Johannes Scheckenbach, Philipp R. Martin and Stefan B. Haderlein
{"title":"单个菌株的细胞数量是否与其对微生物群落中底物总周转率的贡献相关?","authors":"Daniel Buchner, Johannes Scheckenbach, Philipp R. Martin and Stefan B. Haderlein","doi":"10.1039/D4EW00511B","DOIUrl":null,"url":null,"abstract":"<p >The contribution of individual bacterial strains within a mixed microbial community to the overall turnover of a specific compound is often assessed using qPCR data quantifying strain-specific 16S rRNA or functional genes. Here we compare the results of a qPCR based approach with those of compound specific stable isotope analysis (CSIA), which relies on strain-specific magnitudes of kinetic isotope fractionation associated with the biotransformation of a compound. To this end, we performed tetrachloroethylene (PCE) transformation experiments using a synthetic binary culture containing two different <em>Desulfitobacterium</em> strains (<em>Desulfitobacterium hafniense</em> strain Y51; <em>ε</em><small><sub>C,PCE</sub></small> = −5.8‰ and <em>Desulfitobacterium dehalogenans</em> strain PCE1; <em>ε</em><small><sub>C,PCE</sub></small> = −19.7‰). Cell abundances were analyzed <em>via</em> qPCR of functional genes and compared to strain-specific PCE turnover derived <em>via</em> carbon isotope fractionation. Repeated spiking of an initially strain Y51 dominated synthetic binary culture with PCE led to a steadily increasing contribution of strain PCE1 to PCE turnover (<em>ε</em><small><sub>C,initial</sub></small> = −5.6 ± 0.6‰ to <em>ε</em><small><sub>C,final</sub></small> = −18.0 ± 0.6‰) which was not or only weakly reflected in the changes of the cell abundances. The CSIA data further indicate that strain-specific PCE turnover varied by more than 75% at similar cell abundances of the two strains. Thus, the CSIA approach provided new and unexpected insights into the evolution of the metabolic activity of the single strains within a synthetic binary culture and indicates that strain-specific substrate turnover appears to be controlled by physiological and enzymatic properties of the strains rather than their cell abundance.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ew/d4ew00511b?page=search","citationCount":"0","resultStr":"{\"title\":\"Does the number of cells of individual strains correlate with their contribution to the total substrate turnover within a microbial community?†\",\"authors\":\"Daniel Buchner, Johannes Scheckenbach, Philipp R. Martin and Stefan B. Haderlein\",\"doi\":\"10.1039/D4EW00511B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The contribution of individual bacterial strains within a mixed microbial community to the overall turnover of a specific compound is often assessed using qPCR data quantifying strain-specific 16S rRNA or functional genes. Here we compare the results of a qPCR based approach with those of compound specific stable isotope analysis (CSIA), which relies on strain-specific magnitudes of kinetic isotope fractionation associated with the biotransformation of a compound. To this end, we performed tetrachloroethylene (PCE) transformation experiments using a synthetic binary culture containing two different <em>Desulfitobacterium</em> strains (<em>Desulfitobacterium hafniense</em> strain Y51; <em>ε</em><small><sub>C,PCE</sub></small> = −5.8‰ and <em>Desulfitobacterium dehalogenans</em> strain PCE1; <em>ε</em><small><sub>C,PCE</sub></small> = −19.7‰). Cell abundances were analyzed <em>via</em> qPCR of functional genes and compared to strain-specific PCE turnover derived <em>via</em> carbon isotope fractionation. Repeated spiking of an initially strain Y51 dominated synthetic binary culture with PCE led to a steadily increasing contribution of strain PCE1 to PCE turnover (<em>ε</em><small><sub>C,initial</sub></small> = −5.6 ± 0.6‰ to <em>ε</em><small><sub>C,final</sub></small> = −18.0 ± 0.6‰) which was not or only weakly reflected in the changes of the cell abundances. The CSIA data further indicate that strain-specific PCE turnover varied by more than 75% at similar cell abundances of the two strains. Thus, the CSIA approach provided new and unexpected insights into the evolution of the metabolic activity of the single strains within a synthetic binary culture and indicates that strain-specific substrate turnover appears to be controlled by physiological and enzymatic properties of the strains rather than their cell abundance.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/ew/d4ew00511b?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ew/d4ew00511b\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"93","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ew/d4ew00511b","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Does the number of cells of individual strains correlate with their contribution to the total substrate turnover within a microbial community?†
The contribution of individual bacterial strains within a mixed microbial community to the overall turnover of a specific compound is often assessed using qPCR data quantifying strain-specific 16S rRNA or functional genes. Here we compare the results of a qPCR based approach with those of compound specific stable isotope analysis (CSIA), which relies on strain-specific magnitudes of kinetic isotope fractionation associated with the biotransformation of a compound. To this end, we performed tetrachloroethylene (PCE) transformation experiments using a synthetic binary culture containing two different Desulfitobacterium strains (Desulfitobacterium hafniense strain Y51; εC,PCE = −5.8‰ and Desulfitobacterium dehalogenans strain PCE1; εC,PCE = −19.7‰). Cell abundances were analyzed via qPCR of functional genes and compared to strain-specific PCE turnover derived via carbon isotope fractionation. Repeated spiking of an initially strain Y51 dominated synthetic binary culture with PCE led to a steadily increasing contribution of strain PCE1 to PCE turnover (εC,initial = −5.6 ± 0.6‰ to εC,final = −18.0 ± 0.6‰) which was not or only weakly reflected in the changes of the cell abundances. The CSIA data further indicate that strain-specific PCE turnover varied by more than 75% at similar cell abundances of the two strains. Thus, the CSIA approach provided new and unexpected insights into the evolution of the metabolic activity of the single strains within a synthetic binary culture and indicates that strain-specific substrate turnover appears to be controlled by physiological and enzymatic properties of the strains rather than their cell abundance.