基于非线性模型预测控制方法的多堆栈燃料电池空气系统建模与控制

IF 3.6 4区 工程技术 Q3 ENERGY & FUELS
Xin Gu, Jian Zhuang, Jianqun Lin, Wei Zeng, Su Zhou
{"title":"基于非线性模型预测控制方法的多堆栈燃料电池空气系统建模与控制","authors":"Xin Gu,&nbsp;Jian Zhuang,&nbsp;Jianqun Lin,&nbsp;Wei Zeng,&nbsp;Su Zhou","doi":"10.1002/ente.202400836","DOIUrl":null,"url":null,"abstract":"<p>\nHydrogen is crucial for achieving SDGs by driving energy transition and combating climate change. Proton exchange membrane fuel cell technology, leveraging hydrogen, faces challenges in meeting high-power demands. The multistack fuel cell system (MFCS) tackles this by integrating multiple substacks, yet its air supply needs meticulous control. Proportional integral derivative (PID) decoupling from single-stack falls short of MFCS. This article proposes nonlinear model predictive control (NMPC) for optimized air flow and pressure decoupling. Modeling MFCS's air system and designing a predictive model, it is aimed to ensuring precise control of air flow and pressure in each substack. The decoupling experiments show that NMPC outperforms PID, accurately managing air flow and pressure and reducing load fluctuations. For air mass flow, NMPC cuts mean-absolute error (MAE) by 64.56% and root-mean-square error (RMSE) by 81.36%. For pressure, MAE drops 81.23% and RMSE 83.59%. Comprehensive step load tests confirm NMPC's precise, dynamic regulation too, compared to PID, NMPC lowers average MAE for air mass by 20.67%, pressure by 32.22%. RMSE improvements of 31.08% and 33.23% highlight NMPC's strength. NMPC's quick response mitigates coupling issues, enhancing vehicle load adaptability.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":"12 10","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling and Control of Multi-Stack Fuel Cell Air System based on Nonlinear Model Predictive Control Method\",\"authors\":\"Xin Gu,&nbsp;Jian Zhuang,&nbsp;Jianqun Lin,&nbsp;Wei Zeng,&nbsp;Su Zhou\",\"doi\":\"10.1002/ente.202400836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>\\nHydrogen is crucial for achieving SDGs by driving energy transition and combating climate change. Proton exchange membrane fuel cell technology, leveraging hydrogen, faces challenges in meeting high-power demands. The multistack fuel cell system (MFCS) tackles this by integrating multiple substacks, yet its air supply needs meticulous control. Proportional integral derivative (PID) decoupling from single-stack falls short of MFCS. This article proposes nonlinear model predictive control (NMPC) for optimized air flow and pressure decoupling. Modeling MFCS's air system and designing a predictive model, it is aimed to ensuring precise control of air flow and pressure in each substack. The decoupling experiments show that NMPC outperforms PID, accurately managing air flow and pressure and reducing load fluctuations. For air mass flow, NMPC cuts mean-absolute error (MAE) by 64.56% and root-mean-square error (RMSE) by 81.36%. For pressure, MAE drops 81.23% and RMSE 83.59%. Comprehensive step load tests confirm NMPC's precise, dynamic regulation too, compared to PID, NMPC lowers average MAE for air mass by 20.67%, pressure by 32.22%. RMSE improvements of 31.08% and 33.23% highlight NMPC's strength. NMPC's quick response mitigates coupling issues, enhancing vehicle load adaptability.</p>\",\"PeriodicalId\":11573,\"journal\":{\"name\":\"Energy technology\",\"volume\":\"12 10\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ente.202400836\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ente.202400836","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

通过推动能源转型和应对气候变化,氢对于实现可持续发展目标至关重要。利用氢的质子交换膜燃料电池技术在满足高功率需求方面面临挑战。多组燃料电池系统(MFCS)通过集成多个子电池组来解决这一问题,但其空气供应需要精细控制。单电池组的比例积分导数(PID)解耦无法满足 MFCS 的要求。本文提出了优化气流和压力解耦的非线性模型预测控制(NMPC)。对 MFCS 的空气系统建模并设计预测模型,旨在确保对每个分包的空气流量和压力进行精确控制。解耦实验表明,NMPC 的性能优于 PID,能精确管理空气流量和压力,减少负荷波动。在空气质量流量方面,NMPC 将平均绝对误差 (MAE) 降低了 64.56%,均方根误差 (RMSE) 降低了 81.36%。在压力方面,MAE 下降了 81.23%,RMSE 下降了 83.59%。全面的阶跃负荷测试也证实了 NMPC 的精确动态调节能力,与 PID 相比,NMPC 将空气质量的平均 MAE 降低了 20.67%,将压力的平均 MAE 降低了 32.22%。均方根误差(RMSE)分别降低了 31.08% 和 33.23%,彰显了 NMPC 的优势。NMPC 的快速响应缓解了耦合问题,提高了车辆负载适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling and Control of Multi-Stack Fuel Cell Air System based on Nonlinear Model Predictive Control Method

Hydrogen is crucial for achieving SDGs by driving energy transition and combating climate change. Proton exchange membrane fuel cell technology, leveraging hydrogen, faces challenges in meeting high-power demands. The multistack fuel cell system (MFCS) tackles this by integrating multiple substacks, yet its air supply needs meticulous control. Proportional integral derivative (PID) decoupling from single-stack falls short of MFCS. This article proposes nonlinear model predictive control (NMPC) for optimized air flow and pressure decoupling. Modeling MFCS's air system and designing a predictive model, it is aimed to ensuring precise control of air flow and pressure in each substack. The decoupling experiments show that NMPC outperforms PID, accurately managing air flow and pressure and reducing load fluctuations. For air mass flow, NMPC cuts mean-absolute error (MAE) by 64.56% and root-mean-square error (RMSE) by 81.36%. For pressure, MAE drops 81.23% and RMSE 83.59%. Comprehensive step load tests confirm NMPC's precise, dynamic regulation too, compared to PID, NMPC lowers average MAE for air mass by 20.67%, pressure by 32.22%. RMSE improvements of 31.08% and 33.23% highlight NMPC's strength. NMPC's quick response mitigates coupling issues, enhancing vehicle load adaptability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy technology
Energy technology ENERGY & FUELS-
CiteScore
7.00
自引率
5.30%
发文量
0
审稿时长
1.3 months
期刊介绍: Energy Technology provides a forum for researchers and engineers from all relevant disciplines concerned with the generation, conversion, storage, and distribution of energy. This new journal shall publish articles covering all technical aspects of energy process engineering from different perspectives, e.g., new concepts of energy generation and conversion; design, operation, control, and optimization of processes for energy generation (e.g., carbon capture) and conversion of energy carriers; improvement of existing processes; combination of single components to systems for energy generation; design of systems for energy storage; production processes of fuels, e.g., hydrogen, electricity, petroleum, biobased fuels; concepts and design of devices for energy distribution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信