研究太阳能电池应用中 XSnI3(X=Rb、K、Tl、Cs)材料的结构、光学特性和带隙工程的第一性原理研究

IF 2.3 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS
Muhammad Hasnain Jameel, Alaa Nihad Tuama, Aqeela Yasin, Mohd Zul Hilmi Bin Mayzan, Muhammad Sufi bin Roslan, Laith H. Alzubaidi
{"title":"研究太阳能电池应用中 XSnI3(X=Rb、K、Tl、Cs)材料的结构、光学特性和带隙工程的第一性原理研究","authors":"Muhammad Hasnain Jameel,&nbsp;Alaa Nihad Tuama,&nbsp;Aqeela Yasin,&nbsp;Mohd Zul Hilmi Bin Mayzan,&nbsp;Muhammad Sufi bin Roslan,&nbsp;Laith H. Alzubaidi","doi":"10.1007/s10971-024-06496-5","DOIUrl":null,"url":null,"abstract":"<div><p>The PBE-GGA (Perdew Burke-Ernzerhof Generalized Gradient Approximation) for the exchange-correlation potentials, based on first-principles density functional theory (DFT) study is used to investigate the structural, optical, and electrical aspects of XSnI<sub>3</sub> (X = Rb, K, Tl, and Cs) materials. According to the DFT calculation, the energy band gaps (E<sub>g</sub>) of XSnI<sub>3</sub> (X = Rb, K, Tl, and Cs) materials are 2.76, 2.01, 1.90, and 0.34 eV respectively. The direct energy bandgap (E<sub>g</sub>) indicates that halide perovskite materials are appropriate semiconductors for solar cell application. A thorough analysis of optical conductivity indicates that, the optical conductance peaks of XSnI<sub>3</sub> (X = Rb, K, Tl, and Cs) halide perovskite materials reach maximum values of 2.3, 2.2, 4.5, and 5.2 eV, respectively, in the ultraviolet spectrum and shift slightly at higher energy bands. The maximal optical conductivity of XSnI<sub>3</sub> (X = Rb, K, Tl, and Cs) materials were (1.6 × 10<sup>5</sup> <i>Ω</i><sup>−1</sup> <i>cm</i><sup>−1</sup>, 1.8 × 10<sup>5</sup> <i>Ω</i><sup>−1</sup>) <i>cm</i><sup>−1</sup>, 2.2 × 10<sup>5</sup> <i>Ω</i><sup>−1</sup> <i>cm</i><sup>−1</sup> and 2.4 × 10<sup>5</sup> <i>Ω</i><sup>−1</sup> <i>cm</i><sup>−1</sup> respectively. The XSnI<sub>3</sub> (X = Rb, K, Tl, and Cs) is a group of materials with enhanced surface area for light photon absorption and enhanced optical conductivity, energy absorption, and refractive index properties make them suitable for perovskite solar cell application.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"111 3","pages":"966 - 978"},"PeriodicalIF":2.3000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First principles study to investigate structural, optical properties and bandgap engineering of XSnI3(X=Rb, K, Tl, Cs) materials for solar cell applications\",\"authors\":\"Muhammad Hasnain Jameel,&nbsp;Alaa Nihad Tuama,&nbsp;Aqeela Yasin,&nbsp;Mohd Zul Hilmi Bin Mayzan,&nbsp;Muhammad Sufi bin Roslan,&nbsp;Laith H. Alzubaidi\",\"doi\":\"10.1007/s10971-024-06496-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The PBE-GGA (Perdew Burke-Ernzerhof Generalized Gradient Approximation) for the exchange-correlation potentials, based on first-principles density functional theory (DFT) study is used to investigate the structural, optical, and electrical aspects of XSnI<sub>3</sub> (X = Rb, K, Tl, and Cs) materials. According to the DFT calculation, the energy band gaps (E<sub>g</sub>) of XSnI<sub>3</sub> (X = Rb, K, Tl, and Cs) materials are 2.76, 2.01, 1.90, and 0.34 eV respectively. The direct energy bandgap (E<sub>g</sub>) indicates that halide perovskite materials are appropriate semiconductors for solar cell application. A thorough analysis of optical conductivity indicates that, the optical conductance peaks of XSnI<sub>3</sub> (X = Rb, K, Tl, and Cs) halide perovskite materials reach maximum values of 2.3, 2.2, 4.5, and 5.2 eV, respectively, in the ultraviolet spectrum and shift slightly at higher energy bands. The maximal optical conductivity of XSnI<sub>3</sub> (X = Rb, K, Tl, and Cs) materials were (1.6 × 10<sup>5</sup> <i>Ω</i><sup>−1</sup> <i>cm</i><sup>−1</sup>, 1.8 × 10<sup>5</sup> <i>Ω</i><sup>−1</sup>) <i>cm</i><sup>−1</sup>, 2.2 × 10<sup>5</sup> <i>Ω</i><sup>−1</sup> <i>cm</i><sup>−1</sup> and 2.4 × 10<sup>5</sup> <i>Ω</i><sup>−1</sup> <i>cm</i><sup>−1</sup> respectively. The XSnI<sub>3</sub> (X = Rb, K, Tl, and Cs) is a group of materials with enhanced surface area for light photon absorption and enhanced optical conductivity, energy absorption, and refractive index properties make them suitable for perovskite solar cell application.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":664,\"journal\":{\"name\":\"Journal of Sol-Gel Science and Technology\",\"volume\":\"111 3\",\"pages\":\"966 - 978\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sol-Gel Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10971-024-06496-5\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sol-Gel Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10971-024-06496-5","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

基于第一原理密度泛函理论(DFT)的交换相关势 PBE-GGA(Perdew Burke-Ernzerhof Generalized Gradient Approximation)用于研究 XSnI3(X = Rb、K、Tl 和 Cs)材料的结构、光学和电学方面。根据 DFT 计算,XSnI3(X = Rb、K、Tl 和 Cs)材料的能带隙(Eg)分别为 2.76、2.01、1.90 和 0.34 eV。直接能带隙(Eg)表明,卤化物包晶材料是太阳能电池应用的合适半导体。对光传导性的全面分析表明,XSnI3(X = Rb、K、Tl 和 Cs)卤化物包晶材料的光传导性峰值在紫外光谱中分别达到 2.3、2.2、4.5 和 5.2 eV 的最大值,并在较高能段略有移动。XSnI3(X = Rb、K、Tl 和 Cs)材料的最大光导率分别为(1.6 × 105 Ω-1 cm-1、1.8 × 105 Ω-1) cm-1、2.2 × 105 Ω-1 cm-1 和 2.4 × 105 Ω-1 cm-1。XSnI3(X = Rb、K、Tl 和 Cs)是一组具有增强的光子吸收表面积和增强的光导率、能量吸收和折射率特性的材料,因此适合应用于过氧化物太阳能电池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

First principles study to investigate structural, optical properties and bandgap engineering of XSnI3(X=Rb, K, Tl, Cs) materials for solar cell applications

First principles study to investigate structural, optical properties and bandgap engineering of XSnI3(X=Rb, K, Tl, Cs) materials for solar cell applications

The PBE-GGA (Perdew Burke-Ernzerhof Generalized Gradient Approximation) for the exchange-correlation potentials, based on first-principles density functional theory (DFT) study is used to investigate the structural, optical, and electrical aspects of XSnI3 (X = Rb, K, Tl, and Cs) materials. According to the DFT calculation, the energy band gaps (Eg) of XSnI3 (X = Rb, K, Tl, and Cs) materials are 2.76, 2.01, 1.90, and 0.34 eV respectively. The direct energy bandgap (Eg) indicates that halide perovskite materials are appropriate semiconductors for solar cell application. A thorough analysis of optical conductivity indicates that, the optical conductance peaks of XSnI3 (X = Rb, K, Tl, and Cs) halide perovskite materials reach maximum values of 2.3, 2.2, 4.5, and 5.2 eV, respectively, in the ultraviolet spectrum and shift slightly at higher energy bands. The maximal optical conductivity of XSnI3 (X = Rb, K, Tl, and Cs) materials were (1.6 × 105Ω−1cm−1, 1.8 × 105Ω−1) cm−1, 2.2 × 105Ω−1cm−1 and 2.4 × 105Ω−1cm−1 respectively. The XSnI3 (X = Rb, K, Tl, and Cs) is a group of materials with enhanced surface area for light photon absorption and enhanced optical conductivity, energy absorption, and refractive index properties make them suitable for perovskite solar cell application.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Sol-Gel Science and Technology
Journal of Sol-Gel Science and Technology 工程技术-材料科学:硅酸盐
CiteScore
4.70
自引率
4.00%
发文量
280
审稿时长
2.1 months
期刊介绍: The primary objective of the Journal of Sol-Gel Science and Technology (JSST), the official journal of the International Sol-Gel Society, is to provide an international forum for the dissemination of scientific, technological, and general knowledge about materials processed by chemical nanotechnologies known as the "sol-gel" process. The materials of interest include gels, gel-derived glasses, ceramics in form of nano- and micro-powders, bulk, fibres, thin films and coatings as well as more recent materials such as hybrid organic-inorganic materials and composites. Such materials exhibit a wide range of optical, electronic, magnetic, chemical, environmental, and biomedical properties and functionalities. Methods for producing sol-gel-derived materials and the industrial uses of these materials are also of great interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信