{"title":"Sb/Cu/Zn 三掺杂 BaTiO3 半导体:对结晶紫、双氯芬酸钠和刚果红污染物具有极高的介电和光降解活性","authors":"Ahmed Rebey, Imen Massoudi","doi":"10.1007/s10971-024-06488-5","DOIUrl":null,"url":null,"abstract":"<div><p>This research aims to develop the energy storage and photocatalytic functions of perovskite BaTiO<sub>3</sub> material by improving its permittivity and the visible light absorption properties. Both goals were realized by using a mixture of three dopants including Sb, Cu, and Zn elements. By using the solid-state method, pure and Sb/Cu/Zn tri-doped BaTiO<sub>3</sub> samples were successfully synthesized. The tetragonal phase of perovskite BaTiO<sub>3</sub> was confirmed by X-ray diffraction analysis. The crystallite and grain sizes of BaTiO<sub>3</sub> powder were reduced due to the addition of Sb/Cu/Zn dopants. The oxidation states of the elements were identified by X-ray photoelectron spectroscopy (XPS) as Ba (+2), Ti (+4), Sb (+5), Cu (+2) and Zn (+2). Owing to the incorporation of Sb/Cu/Zn ions, the stability and values of the dielectric constant of BaTiO<sub>3</sub> were enhanced with varying the frequency and significantly increased from 2518 to 10,027 at 50 Hz. The optical characteristics of Sb/Cu/Zn tri-doped BaTiO<sub>3</sub> powder displayed a wide visible light absorption properties with measured band gap energy of 2.79 eV. The photocatalytic studies proved the rapid decolorization and mineralization of crystal violet, diclofenac sodium, and Congo red contaminants by Sb/Cu/Zn tri-doped BaTiO<sub>3</sub> catalyst under sunlight spectrum. The trapping tests specified that the hydroxyl radicals (·OH) are the key energetic species in the photodegradation reactions. The reuse tests established the high stability of Sb/Cu/Zn tri-doped BaTiO<sub>3</sub> catalyst for wastewater treatment.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"111 3","pages":"941 - 954"},"PeriodicalIF":2.3000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sb/Cu/Zn tri-doped BaTiO3 semiconductor: colossal dielectric and high photodegradation activities for crystal violet, diclofenac sodium, and Congo red contaminants\",\"authors\":\"Ahmed Rebey, Imen Massoudi\",\"doi\":\"10.1007/s10971-024-06488-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This research aims to develop the energy storage and photocatalytic functions of perovskite BaTiO<sub>3</sub> material by improving its permittivity and the visible light absorption properties. Both goals were realized by using a mixture of three dopants including Sb, Cu, and Zn elements. By using the solid-state method, pure and Sb/Cu/Zn tri-doped BaTiO<sub>3</sub> samples were successfully synthesized. The tetragonal phase of perovskite BaTiO<sub>3</sub> was confirmed by X-ray diffraction analysis. The crystallite and grain sizes of BaTiO<sub>3</sub> powder were reduced due to the addition of Sb/Cu/Zn dopants. The oxidation states of the elements were identified by X-ray photoelectron spectroscopy (XPS) as Ba (+2), Ti (+4), Sb (+5), Cu (+2) and Zn (+2). Owing to the incorporation of Sb/Cu/Zn ions, the stability and values of the dielectric constant of BaTiO<sub>3</sub> were enhanced with varying the frequency and significantly increased from 2518 to 10,027 at 50 Hz. The optical characteristics of Sb/Cu/Zn tri-doped BaTiO<sub>3</sub> powder displayed a wide visible light absorption properties with measured band gap energy of 2.79 eV. The photocatalytic studies proved the rapid decolorization and mineralization of crystal violet, diclofenac sodium, and Congo red contaminants by Sb/Cu/Zn tri-doped BaTiO<sub>3</sub> catalyst under sunlight spectrum. The trapping tests specified that the hydroxyl radicals (·OH) are the key energetic species in the photodegradation reactions. The reuse tests established the high stability of Sb/Cu/Zn tri-doped BaTiO<sub>3</sub> catalyst for wastewater treatment.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":664,\"journal\":{\"name\":\"Journal of Sol-Gel Science and Technology\",\"volume\":\"111 3\",\"pages\":\"941 - 954\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sol-Gel Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10971-024-06488-5\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sol-Gel Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10971-024-06488-5","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Sb/Cu/Zn tri-doped BaTiO3 semiconductor: colossal dielectric and high photodegradation activities for crystal violet, diclofenac sodium, and Congo red contaminants
This research aims to develop the energy storage and photocatalytic functions of perovskite BaTiO3 material by improving its permittivity and the visible light absorption properties. Both goals were realized by using a mixture of three dopants including Sb, Cu, and Zn elements. By using the solid-state method, pure and Sb/Cu/Zn tri-doped BaTiO3 samples were successfully synthesized. The tetragonal phase of perovskite BaTiO3 was confirmed by X-ray diffraction analysis. The crystallite and grain sizes of BaTiO3 powder were reduced due to the addition of Sb/Cu/Zn dopants. The oxidation states of the elements were identified by X-ray photoelectron spectroscopy (XPS) as Ba (+2), Ti (+4), Sb (+5), Cu (+2) and Zn (+2). Owing to the incorporation of Sb/Cu/Zn ions, the stability and values of the dielectric constant of BaTiO3 were enhanced with varying the frequency and significantly increased from 2518 to 10,027 at 50 Hz. The optical characteristics of Sb/Cu/Zn tri-doped BaTiO3 powder displayed a wide visible light absorption properties with measured band gap energy of 2.79 eV. The photocatalytic studies proved the rapid decolorization and mineralization of crystal violet, diclofenac sodium, and Congo red contaminants by Sb/Cu/Zn tri-doped BaTiO3 catalyst under sunlight spectrum. The trapping tests specified that the hydroxyl radicals (·OH) are the key energetic species in the photodegradation reactions. The reuse tests established the high stability of Sb/Cu/Zn tri-doped BaTiO3 catalyst for wastewater treatment.
期刊介绍:
The primary objective of the Journal of Sol-Gel Science and Technology (JSST), the official journal of the International Sol-Gel Society, is to provide an international forum for the dissemination of scientific, technological, and general knowledge about materials processed by chemical nanotechnologies known as the "sol-gel" process. The materials of interest include gels, gel-derived glasses, ceramics in form of nano- and micro-powders, bulk, fibres, thin films and coatings as well as more recent materials such as hybrid organic-inorganic materials and composites. Such materials exhibit a wide range of optical, electronic, magnetic, chemical, environmental, and biomedical properties and functionalities. Methods for producing sol-gel-derived materials and the industrial uses of these materials are also of great interest.