Christa Cuchiero, Guido Gazzani, Janka Möller, Sara Svaluto‐Ferro
{"title":"利用基于签名的模型对 SPX 和 VIX 期权进行联合校准","authors":"Christa Cuchiero, Guido Gazzani, Janka Möller, Sara Svaluto‐Ferro","doi":"10.1111/mafi.12442","DOIUrl":null,"url":null,"abstract":"We consider a stochastic volatility model where the dynamics of the volatility are described by a linear function of the (time extended) signature of a primary process which is supposed to be a polynomial diffusion. We obtain closed form expressions for the VIX squared, exploiting the fact that the truncated signature of a polynomial diffusion is again a polynomial diffusion. Adding to such a primary process the Brownian motion driving the stock price, allows then to express both the log‐price and the VIX squared as linear functions of the signature of the corresponding augmented process. This feature can then be efficiently used for pricing and calibration purposes. Indeed, as the signature samples can be easily precomputed, the calibration task can be split into an offline sampling and a standard optimization. We also propose a Fourier pricing approach for both VIX and SPX options exploiting that the signature of the augmented primary process is an infinite dimensional affine process. For both the SPX and VIX options we obtain highly accurate calibration results, showing that this model class allows to solve the joint calibration problem without adding jumps or rough volatility.","PeriodicalId":49867,"journal":{"name":"Mathematical Finance","volume":"51 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint calibration to SPX and VIX options with signature‐based models\",\"authors\":\"Christa Cuchiero, Guido Gazzani, Janka Möller, Sara Svaluto‐Ferro\",\"doi\":\"10.1111/mafi.12442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a stochastic volatility model where the dynamics of the volatility are described by a linear function of the (time extended) signature of a primary process which is supposed to be a polynomial diffusion. We obtain closed form expressions for the VIX squared, exploiting the fact that the truncated signature of a polynomial diffusion is again a polynomial diffusion. Adding to such a primary process the Brownian motion driving the stock price, allows then to express both the log‐price and the VIX squared as linear functions of the signature of the corresponding augmented process. This feature can then be efficiently used for pricing and calibration purposes. Indeed, as the signature samples can be easily precomputed, the calibration task can be split into an offline sampling and a standard optimization. We also propose a Fourier pricing approach for both VIX and SPX options exploiting that the signature of the augmented primary process is an infinite dimensional affine process. For both the SPX and VIX options we obtain highly accurate calibration results, showing that this model class allows to solve the joint calibration problem without adding jumps or rough volatility.\",\"PeriodicalId\":49867,\"journal\":{\"name\":\"Mathematical Finance\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Finance\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1111/mafi.12442\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Finance","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1111/mafi.12442","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Joint calibration to SPX and VIX options with signature‐based models
We consider a stochastic volatility model where the dynamics of the volatility are described by a linear function of the (time extended) signature of a primary process which is supposed to be a polynomial diffusion. We obtain closed form expressions for the VIX squared, exploiting the fact that the truncated signature of a polynomial diffusion is again a polynomial diffusion. Adding to such a primary process the Brownian motion driving the stock price, allows then to express both the log‐price and the VIX squared as linear functions of the signature of the corresponding augmented process. This feature can then be efficiently used for pricing and calibration purposes. Indeed, as the signature samples can be easily precomputed, the calibration task can be split into an offline sampling and a standard optimization. We also propose a Fourier pricing approach for both VIX and SPX options exploiting that the signature of the augmented primary process is an infinite dimensional affine process. For both the SPX and VIX options we obtain highly accurate calibration results, showing that this model class allows to solve the joint calibration problem without adding jumps or rough volatility.
期刊介绍:
Mathematical Finance seeks to publish original research articles focused on the development and application of novel mathematical and statistical methods for the analysis of financial problems.
The journal welcomes contributions on new statistical methods for the analysis of financial problems. Empirical results will be appropriate to the extent that they illustrate a statistical technique, validate a model or provide insight into a financial problem. Papers whose main contribution rests on empirical results derived with standard approaches will not be considered.