Murugesan Chandrasekaran , Manivannan Paramasivan , Sajjad Ahmad
{"title":"关于丛枝菌根真菌介导的砷胁迫缓解的综述","authors":"Murugesan Chandrasekaran , Manivannan Paramasivan , Sajjad Ahmad","doi":"10.1016/j.ibiod.2024.105872","DOIUrl":null,"url":null,"abstract":"<div><p>Arsenic (As) represents a hazardous, carcinogenic substance transported in the food chain causing severe health issues. Several technologies are implemented to minimize arsenic accumulation and toxicity to plants and soil. Traditional arsenic remediation methodologies utilize soil washing, land filling, and chemical stabilization. Soil microorganisms’ applications render cost-effective and eco-friendly arsenic toxicity alleviation. Microorganisms-mediated methods have gained momentum over traditional remediation in recent years. Arbuscular mycorrhizal fungi (AMF) are predominant microorganisms forming symbiosis with terrestrial plant roots. AMF mycelium interacts with the rhizosphere network and improves essential nutrient acquisition, water absorption, and plant growth. AMF also accounts for stress management and plant protection. Directly or indirectly AMF mitigates arsenic metal stress through plant growth and augmented physiological mechanisms. The AMF-mediated arsenic toxicity management encompasses the symbiosis between AMF and host plant. AMF mycelium acts as a metal sink and reduces soil arsenic concentrations, accumulation, and translocation of arsenic in roots and shoots. Thus, AMF inoculation reduces arsenic mobilization and increases arsenic biological dilution. Consequently, arsenic accumulation induces a decrease in oxidative stress. AMF aids the host plant growth and maintains the phosphate/arsenate ratio in the plant tissues. Thereby, a suitable environment is created in arsenic-contaminated soils by AMF. Environmental management of As toxicity, tolerance, and remediation strategies are correlated for sustainable agriculture.</p></div>","PeriodicalId":13643,"journal":{"name":"International Biodeterioration & Biodegradation","volume":"194 ","pages":"Article 105872"},"PeriodicalIF":4.1000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Review on arbuscular mycorrhizal fungi mediated alleviation of arsenic stress\",\"authors\":\"Murugesan Chandrasekaran , Manivannan Paramasivan , Sajjad Ahmad\",\"doi\":\"10.1016/j.ibiod.2024.105872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Arsenic (As) represents a hazardous, carcinogenic substance transported in the food chain causing severe health issues. Several technologies are implemented to minimize arsenic accumulation and toxicity to plants and soil. Traditional arsenic remediation methodologies utilize soil washing, land filling, and chemical stabilization. Soil microorganisms’ applications render cost-effective and eco-friendly arsenic toxicity alleviation. Microorganisms-mediated methods have gained momentum over traditional remediation in recent years. Arbuscular mycorrhizal fungi (AMF) are predominant microorganisms forming symbiosis with terrestrial plant roots. AMF mycelium interacts with the rhizosphere network and improves essential nutrient acquisition, water absorption, and plant growth. AMF also accounts for stress management and plant protection. Directly or indirectly AMF mitigates arsenic metal stress through plant growth and augmented physiological mechanisms. The AMF-mediated arsenic toxicity management encompasses the symbiosis between AMF and host plant. AMF mycelium acts as a metal sink and reduces soil arsenic concentrations, accumulation, and translocation of arsenic in roots and shoots. Thus, AMF inoculation reduces arsenic mobilization and increases arsenic biological dilution. Consequently, arsenic accumulation induces a decrease in oxidative stress. AMF aids the host plant growth and maintains the phosphate/arsenate ratio in the plant tissues. Thereby, a suitable environment is created in arsenic-contaminated soils by AMF. Environmental management of As toxicity, tolerance, and remediation strategies are correlated for sustainable agriculture.</p></div>\",\"PeriodicalId\":13643,\"journal\":{\"name\":\"International Biodeterioration & Biodegradation\",\"volume\":\"194 \",\"pages\":\"Article 105872\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Biodeterioration & Biodegradation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0964830524001434\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Biodeterioration & Biodegradation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0964830524001434","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Review on arbuscular mycorrhizal fungi mediated alleviation of arsenic stress
Arsenic (As) represents a hazardous, carcinogenic substance transported in the food chain causing severe health issues. Several technologies are implemented to minimize arsenic accumulation and toxicity to plants and soil. Traditional arsenic remediation methodologies utilize soil washing, land filling, and chemical stabilization. Soil microorganisms’ applications render cost-effective and eco-friendly arsenic toxicity alleviation. Microorganisms-mediated methods have gained momentum over traditional remediation in recent years. Arbuscular mycorrhizal fungi (AMF) are predominant microorganisms forming symbiosis with terrestrial plant roots. AMF mycelium interacts with the rhizosphere network and improves essential nutrient acquisition, water absorption, and plant growth. AMF also accounts for stress management and plant protection. Directly or indirectly AMF mitigates arsenic metal stress through plant growth and augmented physiological mechanisms. The AMF-mediated arsenic toxicity management encompasses the symbiosis between AMF and host plant. AMF mycelium acts as a metal sink and reduces soil arsenic concentrations, accumulation, and translocation of arsenic in roots and shoots. Thus, AMF inoculation reduces arsenic mobilization and increases arsenic biological dilution. Consequently, arsenic accumulation induces a decrease in oxidative stress. AMF aids the host plant growth and maintains the phosphate/arsenate ratio in the plant tissues. Thereby, a suitable environment is created in arsenic-contaminated soils by AMF. Environmental management of As toxicity, tolerance, and remediation strategies are correlated for sustainable agriculture.
期刊介绍:
International Biodeterioration and Biodegradation publishes original research papers and reviews on the biological causes of deterioration or degradation.