{"title":"揭示常见抗抑郁药物难以捉摸的结构和机制","authors":"Jieye Lin, Guanhong Bu, Johan Unge, Tamir Gonen","doi":"10.1002/adtp.202400117","DOIUrl":null,"url":null,"abstract":"<p>Most treatments to alleviate major depression work by either inhibiting human monoamine transporters, vital for the reuptake of monoamine neurotransmitters, or by inhibiting monoamine oxidases, which are vital for their degradation. The analysis of the experimental 3D structures of those antidepressants in their drug formulation state is key to precision drug design and development. In this study, microcrystal electron diffraction (MicroED) is applied to reveal the atomic 3D structures for the first time of five of the most prevalent antidepressants (reboxetine, pipofezine, ansofaxine, phenelzine, and bifemelane) directly from the commercially available powder of the active ingredients. Their modes of binding are investigated by molecular docking, revealing the essential contacts and conformational changes into the biologically active state. This study underscores the combined use of MicroED and molecular docking to uncover elusive drug structures and mechanisms to aid in further drug development pipelines.</p>","PeriodicalId":7284,"journal":{"name":"Advanced Therapeutics","volume":"7 9","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adtp.202400117","citationCount":"0","resultStr":"{\"title\":\"Uncovering the Elusive Structures and Mechanisms of Prevalent Antidepressants\",\"authors\":\"Jieye Lin, Guanhong Bu, Johan Unge, Tamir Gonen\",\"doi\":\"10.1002/adtp.202400117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Most treatments to alleviate major depression work by either inhibiting human monoamine transporters, vital for the reuptake of monoamine neurotransmitters, or by inhibiting monoamine oxidases, which are vital for their degradation. The analysis of the experimental 3D structures of those antidepressants in their drug formulation state is key to precision drug design and development. In this study, microcrystal electron diffraction (MicroED) is applied to reveal the atomic 3D structures for the first time of five of the most prevalent antidepressants (reboxetine, pipofezine, ansofaxine, phenelzine, and bifemelane) directly from the commercially available powder of the active ingredients. Their modes of binding are investigated by molecular docking, revealing the essential contacts and conformational changes into the biologically active state. This study underscores the combined use of MicroED and molecular docking to uncover elusive drug structures and mechanisms to aid in further drug development pipelines.</p>\",\"PeriodicalId\":7284,\"journal\":{\"name\":\"Advanced Therapeutics\",\"volume\":\"7 9\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adtp.202400117\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adtp.202400117\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adtp.202400117","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Uncovering the Elusive Structures and Mechanisms of Prevalent Antidepressants
Most treatments to alleviate major depression work by either inhibiting human monoamine transporters, vital for the reuptake of monoamine neurotransmitters, or by inhibiting monoamine oxidases, which are vital for their degradation. The analysis of the experimental 3D structures of those antidepressants in their drug formulation state is key to precision drug design and development. In this study, microcrystal electron diffraction (MicroED) is applied to reveal the atomic 3D structures for the first time of five of the most prevalent antidepressants (reboxetine, pipofezine, ansofaxine, phenelzine, and bifemelane) directly from the commercially available powder of the active ingredients. Their modes of binding are investigated by molecular docking, revealing the essential contacts and conformational changes into the biologically active state. This study underscores the combined use of MicroED and molecular docking to uncover elusive drug structures and mechanisms to aid in further drug development pipelines.