{"title":"国家首都地区(NCR)苯和甲苯排放评估:对健康风险和臭氧形成的影响","authors":"Nancy Kaushik, A. K. Mishra, Rupesh M. Das","doi":"10.1007/s11869-024-01618-y","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates benzene and toluene concentrations in Delhi and National Capital Region (NCR), India, assessing health risks and impacts on air quality, focusing on their role in ozone formation. Data from 56 monitoring stations identified 18 locations where benzene levels exceed the national safe limit, primarily due to traffic emissions and seasonal variations. Benzene concentrations peaked at 15.06 µg/m<sup>3</sup> in Loni, Ghaziabad, during winter. Seasonal analysis indicated higher benzene levels during winter and post-monsoon periods due to lower planetary boundary layer heights (PBLHs) trapping pollutants near the ground. Health risk assessments revealed probable cancer risks for residents, with children facing higher risks than adults. Using the Ozone Formation Potential (OFP) metric and Maximum Incremental Reactivity (MIR) coefficients of 0.72 for benzene and 4.0 for toluene, the study predicted OFP values for various hotspots. Toluene's significant contribution to ozone formation was evident, with the highest concentration observed at Charkhi Dadri, Haryana (29.65 ± 2.26 µg/m<sup>3</sup>), surpassing the WHO’s air quality guidelines of 120 µg/m<sup>3</sup>, and the highest benzene concentration at Loni (7.3 ± 0.8 µg/m<sup>3</sup>). Toluene/benzene ratio and principal component analysis identified automobiles and industrial activities as significant pollution sources. The study underscores the urgent need for stricter emission controls, cleaner fuels, and improved urban planning to reduce these pollutant's negative impacts on the environment. Elevated VOC levels and associated health risks necessitate immediate action to protect public health and improve air quality in Delhi NCR. These results emphasize critical need for interventions to address benzene and toluene pollution comprehensively.</p></div>","PeriodicalId":49109,"journal":{"name":"Air Quality Atmosphere and Health","volume":"17 12","pages":"3015 - 3029"},"PeriodicalIF":2.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of benzene and toluene emissions in National Capital Region (NCR): Implications for health risks and ozone formation\",\"authors\":\"Nancy Kaushik, A. K. Mishra, Rupesh M. Das\",\"doi\":\"10.1007/s11869-024-01618-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates benzene and toluene concentrations in Delhi and National Capital Region (NCR), India, assessing health risks and impacts on air quality, focusing on their role in ozone formation. Data from 56 monitoring stations identified 18 locations where benzene levels exceed the national safe limit, primarily due to traffic emissions and seasonal variations. Benzene concentrations peaked at 15.06 µg/m<sup>3</sup> in Loni, Ghaziabad, during winter. Seasonal analysis indicated higher benzene levels during winter and post-monsoon periods due to lower planetary boundary layer heights (PBLHs) trapping pollutants near the ground. Health risk assessments revealed probable cancer risks for residents, with children facing higher risks than adults. Using the Ozone Formation Potential (OFP) metric and Maximum Incremental Reactivity (MIR) coefficients of 0.72 for benzene and 4.0 for toluene, the study predicted OFP values for various hotspots. Toluene's significant contribution to ozone formation was evident, with the highest concentration observed at Charkhi Dadri, Haryana (29.65 ± 2.26 µg/m<sup>3</sup>), surpassing the WHO’s air quality guidelines of 120 µg/m<sup>3</sup>, and the highest benzene concentration at Loni (7.3 ± 0.8 µg/m<sup>3</sup>). Toluene/benzene ratio and principal component analysis identified automobiles and industrial activities as significant pollution sources. The study underscores the urgent need for stricter emission controls, cleaner fuels, and improved urban planning to reduce these pollutant's negative impacts on the environment. Elevated VOC levels and associated health risks necessitate immediate action to protect public health and improve air quality in Delhi NCR. These results emphasize critical need for interventions to address benzene and toluene pollution comprehensively.</p></div>\",\"PeriodicalId\":49109,\"journal\":{\"name\":\"Air Quality Atmosphere and Health\",\"volume\":\"17 12\",\"pages\":\"3015 - 3029\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Air Quality Atmosphere and Health\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11869-024-01618-y\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Air Quality Atmosphere and Health","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s11869-024-01618-y","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Assessment of benzene and toluene emissions in National Capital Region (NCR): Implications for health risks and ozone formation
This study investigates benzene and toluene concentrations in Delhi and National Capital Region (NCR), India, assessing health risks and impacts on air quality, focusing on their role in ozone formation. Data from 56 monitoring stations identified 18 locations where benzene levels exceed the national safe limit, primarily due to traffic emissions and seasonal variations. Benzene concentrations peaked at 15.06 µg/m3 in Loni, Ghaziabad, during winter. Seasonal analysis indicated higher benzene levels during winter and post-monsoon periods due to lower planetary boundary layer heights (PBLHs) trapping pollutants near the ground. Health risk assessments revealed probable cancer risks for residents, with children facing higher risks than adults. Using the Ozone Formation Potential (OFP) metric and Maximum Incremental Reactivity (MIR) coefficients of 0.72 for benzene and 4.0 for toluene, the study predicted OFP values for various hotspots. Toluene's significant contribution to ozone formation was evident, with the highest concentration observed at Charkhi Dadri, Haryana (29.65 ± 2.26 µg/m3), surpassing the WHO’s air quality guidelines of 120 µg/m3, and the highest benzene concentration at Loni (7.3 ± 0.8 µg/m3). Toluene/benzene ratio and principal component analysis identified automobiles and industrial activities as significant pollution sources. The study underscores the urgent need for stricter emission controls, cleaner fuels, and improved urban planning to reduce these pollutant's negative impacts on the environment. Elevated VOC levels and associated health risks necessitate immediate action to protect public health and improve air quality in Delhi NCR. These results emphasize critical need for interventions to address benzene and toluene pollution comprehensively.
期刊介绍:
Air Quality, Atmosphere, and Health is a multidisciplinary journal which, by its very name, illustrates the broad range of work it publishes and which focuses on atmospheric consequences of human activities and their implications for human and ecological health.
It offers research papers, critical literature reviews and commentaries, as well as special issues devoted to topical subjects or themes.
International in scope, the journal presents papers that inform and stimulate a global readership, as the topic addressed are global in their import. Consequently, we do not encourage submission of papers involving local data that relate to local problems. Unless they demonstrate wide applicability, these are better submitted to national or regional journals.
Air Quality, Atmosphere & Health addresses such topics as acid precipitation; airborne particulate matter; air quality monitoring and management; exposure assessment; risk assessment; indoor air quality; atmospheric chemistry; atmospheric modeling and prediction; air pollution climatology; climate change and air quality; air pollution measurement; atmospheric impact assessment; forest-fire emissions; atmospheric science; greenhouse gases; health and ecological effects; clean air technology; regional and global change and satellite measurements.
This journal benefits a diverse audience of researchers, public health officials and policy makers addressing problems that call for solutions based in evidence from atmospheric and exposure assessment scientists, epidemiologists, and risk assessors. Publication in the journal affords the opportunity to reach beyond defined disciplinary niches to this broader readership.