{"title":"绕一对球体流动的高效直接强迫沉浸边界法","authors":"Der Chang Lo, Katherine Lee, Pao-Lan Shen","doi":"10.1002/fld.5326","DOIUrl":null,"url":null,"abstract":"<p>The numerical study of flow around a pair of spheres and a square array of spheres is investigated by using a direct-forcing immersed boundary method. Using high resolution three-dimensional computations, we analyzed the flow around several configurations: a sphere, a pair of spheres in a tandem arrangement with center-to-center streamwise ratio L/D ranging from 1 to 6, and a square array with 9 spheres in a uniform arrangement. In the latter case, we explore the ratio of array diameter (<i>D</i><sub>G</sub>) to sphere diameter (D) at 4, 5, 6 and 7. The center-to-center streamwise and transverse pitch is the same, varied from L/D = 1.5, 2, 2.5 to 3, and they were arranged in a square periodic array to allow uniform distribution within the array. Based on the effective direct-forcing immersed boundary projection method, the fractional time marching methodology is applied for solving four field variables involving three velocities and one pressure component. The pressure Poisson equation is advanced in space by using the fast Fourier transform (FFT) and a tridiagonal matrix algorithm (TDMA), effectively solving for the diagonally dominant tridiagonal matrix equations. A direct-forcing immersed boundary method is involved to treat the interfacial terms by adding the appropriate sources as force function at the boundary, separating the phases. Geometries featuring the stationary solid obstacles in the flow are embedded in the Cartesian grid with special discretizations near the embedded boundary using a discrete Dirac delta function to ensure the accuracy of the solution in the cut cells. An important characteristic of flow over the multiple spheres is devised by comparing with the drag and lift coefficients, as well as vortex shedding.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An efficient direct-forcing immersed boundary method for flow around a pair of spheres\",\"authors\":\"Der Chang Lo, Katherine Lee, Pao-Lan Shen\",\"doi\":\"10.1002/fld.5326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The numerical study of flow around a pair of spheres and a square array of spheres is investigated by using a direct-forcing immersed boundary method. Using high resolution three-dimensional computations, we analyzed the flow around several configurations: a sphere, a pair of spheres in a tandem arrangement with center-to-center streamwise ratio L/D ranging from 1 to 6, and a square array with 9 spheres in a uniform arrangement. In the latter case, we explore the ratio of array diameter (<i>D</i><sub>G</sub>) to sphere diameter (D) at 4, 5, 6 and 7. The center-to-center streamwise and transverse pitch is the same, varied from L/D = 1.5, 2, 2.5 to 3, and they were arranged in a square periodic array to allow uniform distribution within the array. Based on the effective direct-forcing immersed boundary projection method, the fractional time marching methodology is applied for solving four field variables involving three velocities and one pressure component. The pressure Poisson equation is advanced in space by using the fast Fourier transform (FFT) and a tridiagonal matrix algorithm (TDMA), effectively solving for the diagonally dominant tridiagonal matrix equations. A direct-forcing immersed boundary method is involved to treat the interfacial terms by adding the appropriate sources as force function at the boundary, separating the phases. Geometries featuring the stationary solid obstacles in the flow are embedded in the Cartesian grid with special discretizations near the embedded boundary using a discrete Dirac delta function to ensure the accuracy of the solution in the cut cells. An important characteristic of flow over the multiple spheres is devised by comparing with the drag and lift coefficients, as well as vortex shedding.</p>\",\"PeriodicalId\":50348,\"journal\":{\"name\":\"International Journal for Numerical Methods in Fluids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/fld.5326\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Fluids","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fld.5326","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
An efficient direct-forcing immersed boundary method for flow around a pair of spheres
The numerical study of flow around a pair of spheres and a square array of spheres is investigated by using a direct-forcing immersed boundary method. Using high resolution three-dimensional computations, we analyzed the flow around several configurations: a sphere, a pair of spheres in a tandem arrangement with center-to-center streamwise ratio L/D ranging from 1 to 6, and a square array with 9 spheres in a uniform arrangement. In the latter case, we explore the ratio of array diameter (DG) to sphere diameter (D) at 4, 5, 6 and 7. The center-to-center streamwise and transverse pitch is the same, varied from L/D = 1.5, 2, 2.5 to 3, and they were arranged in a square periodic array to allow uniform distribution within the array. Based on the effective direct-forcing immersed boundary projection method, the fractional time marching methodology is applied for solving four field variables involving three velocities and one pressure component. The pressure Poisson equation is advanced in space by using the fast Fourier transform (FFT) and a tridiagonal matrix algorithm (TDMA), effectively solving for the diagonally dominant tridiagonal matrix equations. A direct-forcing immersed boundary method is involved to treat the interfacial terms by adding the appropriate sources as force function at the boundary, separating the phases. Geometries featuring the stationary solid obstacles in the flow are embedded in the Cartesian grid with special discretizations near the embedded boundary using a discrete Dirac delta function to ensure the accuracy of the solution in the cut cells. An important characteristic of flow over the multiple spheres is devised by comparing with the drag and lift coefficients, as well as vortex shedding.
期刊介绍:
The International Journal for Numerical Methods in Fluids publishes refereed papers describing significant developments in computational methods that are applicable to scientific and engineering problems in fluid mechanics, fluid dynamics, micro and bio fluidics, and fluid-structure interaction. Numerical methods for solving ancillary equations, such as transport and advection and diffusion, are also relevant. The Editors encourage contributions in the areas of multi-physics, multi-disciplinary and multi-scale problems involving fluid subsystems, verification and validation, uncertainty quantification, and model reduction.
Numerical examples that illustrate the described methods or their accuracy are in general expected. Discussions of papers already in print are also considered. However, papers dealing strictly with applications of existing methods or dealing with areas of research that are not deemed to be cutting edge by the Editors will not be considered for review.
The journal publishes full-length papers, which should normally be less than 25 journal pages in length. Two-part papers are discouraged unless considered necessary by the Editors.