{"title":"基于 222Rn 生成率测量溶液中高浓度 226Ra 活性的新方法","authors":"Chao Wang, Zixuan Bai, Enze Zhang, Wenliang Ma, Xiaosheng Zhao, Quan Tang","doi":"10.1007/s10967-024-09628-x","DOIUrl":null,"url":null,"abstract":"<div><p>Traditional methods for measuring the <sup>226</sup>Ra activity are time-consuming and the equipment is large and inconvenient to carry. This article proposes a new method for quickly measuring the activity of high-concentration <sup>226</sup>Ra using RAD7, which is simple to operate, does not require chemical separation. The <sup>222</sup>Rn production rate is obtained by measuring the <sup>222</sup>Rn concentration in a nonequilibrium state using RAD7, and the <sup>226</sup>Ra activity is yielded according to the law of radioactive decay. Verification experimental results demonstrate that, compared with the FD125 measurement method, the proposed method reduces the measurement time by 92%, with result deviation within 6%. Therefore, the proposed method can provide technical support for rapid measurement during the <sup>226</sup>Ra production process.</p></div>","PeriodicalId":661,"journal":{"name":"Journal of Radioanalytical and Nuclear Chemistry","volume":"333 11","pages":"5741 - 5746"},"PeriodicalIF":1.5000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new method for the measurement of the activity of high-concentration 226Ra in solution based on 222Rn production rate\",\"authors\":\"Chao Wang, Zixuan Bai, Enze Zhang, Wenliang Ma, Xiaosheng Zhao, Quan Tang\",\"doi\":\"10.1007/s10967-024-09628-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Traditional methods for measuring the <sup>226</sup>Ra activity are time-consuming and the equipment is large and inconvenient to carry. This article proposes a new method for quickly measuring the activity of high-concentration <sup>226</sup>Ra using RAD7, which is simple to operate, does not require chemical separation. The <sup>222</sup>Rn production rate is obtained by measuring the <sup>222</sup>Rn concentration in a nonequilibrium state using RAD7, and the <sup>226</sup>Ra activity is yielded according to the law of radioactive decay. Verification experimental results demonstrate that, compared with the FD125 measurement method, the proposed method reduces the measurement time by 92%, with result deviation within 6%. Therefore, the proposed method can provide technical support for rapid measurement during the <sup>226</sup>Ra production process.</p></div>\",\"PeriodicalId\":661,\"journal\":{\"name\":\"Journal of Radioanalytical and Nuclear Chemistry\",\"volume\":\"333 11\",\"pages\":\"5741 - 5746\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Radioanalytical and Nuclear Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10967-024-09628-x\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radioanalytical and Nuclear Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10967-024-09628-x","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
A new method for the measurement of the activity of high-concentration 226Ra in solution based on 222Rn production rate
Traditional methods for measuring the 226Ra activity are time-consuming and the equipment is large and inconvenient to carry. This article proposes a new method for quickly measuring the activity of high-concentration 226Ra using RAD7, which is simple to operate, does not require chemical separation. The 222Rn production rate is obtained by measuring the 222Rn concentration in a nonequilibrium state using RAD7, and the 226Ra activity is yielded according to the law of radioactive decay. Verification experimental results demonstrate that, compared with the FD125 measurement method, the proposed method reduces the measurement time by 92%, with result deviation within 6%. Therefore, the proposed method can provide technical support for rapid measurement during the 226Ra production process.
期刊介绍:
An international periodical publishing original papers, letters, review papers and short communications on nuclear chemistry. The subjects covered include: Nuclear chemistry, Radiochemistry, Radiation chemistry, Radiobiological chemistry, Environmental radiochemistry, Production and control of radioisotopes and labelled compounds, Nuclear power plant chemistry, Nuclear fuel chemistry, Radioanalytical chemistry, Radiation detection and measurement, Nuclear instrumentation and automation, etc.