基于小样本学习的电池多场景阻抗谱在线生成

IF 7.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY
{"title":"基于小样本学习的电池多场景阻抗谱在线生成","authors":"","doi":"10.1016/j.xcrp.2024.102134","DOIUrl":null,"url":null,"abstract":"<p>The onboard acquisition of data from electrochemical impedance spectroscopy (EIS) is critically important to the state assessment and fault diagnosis of mobile batteries, but it is technically challenging due to the stringent test requirements, limited modeling data, and varying mechanisms among batteries with different chemistries. This paper, without requiring any additional sensors, extends the traditional EIS measurement to online generation and covers most battery-using scenarios, including different battery chemistries, aging degrees, remaining capacities, and temperatures. Virtual simulation and transfer techniques are employed to train a deep neural network with a significantly reduced dataset. Specifically, we train the network with no more than 24 groups of data and achieve an average relative error lower than 5%, outperforming most “big data”-involved algorithms of its kind. Our method lowers the threshold of using EIS onboard and unlocks new opportunities to monitor the battery’s performance in both time and frequency domain comprehensively in real time.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"86 1","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online multi-scenario impedance spectra generation for batteries based on small-sample learning\",\"authors\":\"\",\"doi\":\"10.1016/j.xcrp.2024.102134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The onboard acquisition of data from electrochemical impedance spectroscopy (EIS) is critically important to the state assessment and fault diagnosis of mobile batteries, but it is technically challenging due to the stringent test requirements, limited modeling data, and varying mechanisms among batteries with different chemistries. This paper, without requiring any additional sensors, extends the traditional EIS measurement to online generation and covers most battery-using scenarios, including different battery chemistries, aging degrees, remaining capacities, and temperatures. Virtual simulation and transfer techniques are employed to train a deep neural network with a significantly reduced dataset. Specifically, we train the network with no more than 24 groups of data and achieve an average relative error lower than 5%, outperforming most “big data”-involved algorithms of its kind. Our method lowers the threshold of using EIS onboard and unlocks new opportunities to monitor the battery’s performance in both time and frequency domain comprehensively in real time.</p>\",\"PeriodicalId\":9703,\"journal\":{\"name\":\"Cell Reports Physical Science\",\"volume\":\"86 1\",\"pages\":\"\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Physical Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xcrp.2024.102134\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Physical Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.xcrp.2024.102134","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

车载电化学阻抗谱(EIS)数据采集对于移动电池的状态评估和故障诊断至关重要,但由于测试要求严格、建模数据有限以及不同化学成分电池的机理各不相同,因此在技术上极具挑战性。本文不需要任何额外的传感器,就能将传统的 EIS 测量扩展到在线生成,并涵盖大多数电池使用场景,包括不同的电池化学成分、老化程度、剩余容量和温度。本文采用虚拟仿真和转移技术,利用大幅减少的数据集训练深度神经网络。具体来说,我们使用不超过 24 组数据训练网络,平均相对误差低于 5%,优于大多数涉及 "大数据 "的同类算法。我们的方法降低了车载 EIS 的使用门槛,为实时全面监控电池在时域和频域的性能带来了新的机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Online multi-scenario impedance spectra generation for batteries based on small-sample learning

Online multi-scenario impedance spectra generation for batteries based on small-sample learning

The onboard acquisition of data from electrochemical impedance spectroscopy (EIS) is critically important to the state assessment and fault diagnosis of mobile batteries, but it is technically challenging due to the stringent test requirements, limited modeling data, and varying mechanisms among batteries with different chemistries. This paper, without requiring any additional sensors, extends the traditional EIS measurement to online generation and covers most battery-using scenarios, including different battery chemistries, aging degrees, remaining capacities, and temperatures. Virtual simulation and transfer techniques are employed to train a deep neural network with a significantly reduced dataset. Specifically, we train the network with no more than 24 groups of data and achieve an average relative error lower than 5%, outperforming most “big data”-involved algorithms of its kind. Our method lowers the threshold of using EIS onboard and unlocks new opportunities to monitor the battery’s performance in both time and frequency domain comprehensively in real time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Reports Physical Science
Cell Reports Physical Science Energy-Energy (all)
CiteScore
11.40
自引率
2.20%
发文量
388
审稿时长
62 days
期刊介绍: Cell Reports Physical Science, a premium open-access journal from Cell Press, features high-quality, cutting-edge research spanning the physical sciences. It serves as an open forum fostering collaboration among physical scientists while championing open science principles. Published works must signify significant advancements in fundamental insight or technological applications within fields such as chemistry, physics, materials science, energy science, engineering, and related interdisciplinary studies. In addition to longer articles, the journal considers impactful short-form reports and short reviews covering recent literature in emerging fields. Continually adapting to the evolving open science landscape, the journal reviews its policies to align with community consensus and best practices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信