通过微流控阻抗能谱对电解质浓度进行纯电检测

IF 7.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY
{"title":"通过微流控阻抗能谱对电解质浓度进行纯电检测","authors":"","doi":"10.1016/j.xcrp.2024.102133","DOIUrl":null,"url":null,"abstract":"<p>Impedance spectroscopy enables the electrical properties of samples to be probed and is commonly used to characterize solids. Extending this technique to analyze fluids within microfluidic channels could enable the rapid characterization of bodily fluids such as sweat. Here, we present a low-cost microfluidic platform with integrated aerosol-jet printed electrodes for the electrical characterization of fluids via impedance spectroscopy. A novel analysis method is presented to accurately determine the concentration of several aqueous ionic chloride solutions, namely NaCl, KCl, CaCl<sub>2</sub>, and MgCl<sub>2</sub>. Importantly, we identify a key parameter, the turning point frequency of the capacitance-frequency graph, which is found to have a highly linear correlation with the solution concentration for each species spanning at least three orders of magnitude. This linear dependence is highly reproducible across different cationic species, making it useful for accurate fluid characterization. Applying this technique to analyze bodily fluids in real time has implications for remote health monitoring.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"66 1","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Purely electrical detection of electrolyte concentration through microfluidic impedance spectroscopy\",\"authors\":\"\",\"doi\":\"10.1016/j.xcrp.2024.102133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Impedance spectroscopy enables the electrical properties of samples to be probed and is commonly used to characterize solids. Extending this technique to analyze fluids within microfluidic channels could enable the rapid characterization of bodily fluids such as sweat. Here, we present a low-cost microfluidic platform with integrated aerosol-jet printed electrodes for the electrical characterization of fluids via impedance spectroscopy. A novel analysis method is presented to accurately determine the concentration of several aqueous ionic chloride solutions, namely NaCl, KCl, CaCl<sub>2</sub>, and MgCl<sub>2</sub>. Importantly, we identify a key parameter, the turning point frequency of the capacitance-frequency graph, which is found to have a highly linear correlation with the solution concentration for each species spanning at least three orders of magnitude. This linear dependence is highly reproducible across different cationic species, making it useful for accurate fluid characterization. Applying this technique to analyze bodily fluids in real time has implications for remote health monitoring.</p>\",\"PeriodicalId\":9703,\"journal\":{\"name\":\"Cell Reports Physical Science\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Physical Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xcrp.2024.102133\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Physical Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.xcrp.2024.102133","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

阻抗光谱法可探测样品的电特性,常用于表征固体。将这一技术扩展到分析微流体通道内的流体,可实现对汗液等体液的快速表征。在这里,我们介绍了一种集成气溶胶喷射印刷电极的低成本微流控平台,用于通过阻抗光谱法对流体进行电学表征。我们提出了一种新颖的分析方法,可准确测定几种离子氯化物水溶液(即 NaCl、KCl、CaCl2 和 MgCl2)的浓度。重要的是,我们确定了一个关键参数,即电容-频率图的转折点频率,发现该频率与每种物质的溶液浓度高度线性相关,至少跨越三个数量级。这种线性关系在不同的阳离子物种之间具有很高的重现性,因此可用于准确的流体表征。应用这种技术实时分析体液对远程健康监测具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Purely electrical detection of electrolyte concentration through microfluidic impedance spectroscopy

Purely electrical detection of electrolyte concentration through microfluidic impedance spectroscopy

Impedance spectroscopy enables the electrical properties of samples to be probed and is commonly used to characterize solids. Extending this technique to analyze fluids within microfluidic channels could enable the rapid characterization of bodily fluids such as sweat. Here, we present a low-cost microfluidic platform with integrated aerosol-jet printed electrodes for the electrical characterization of fluids via impedance spectroscopy. A novel analysis method is presented to accurately determine the concentration of several aqueous ionic chloride solutions, namely NaCl, KCl, CaCl2, and MgCl2. Importantly, we identify a key parameter, the turning point frequency of the capacitance-frequency graph, which is found to have a highly linear correlation with the solution concentration for each species spanning at least three orders of magnitude. This linear dependence is highly reproducible across different cationic species, making it useful for accurate fluid characterization. Applying this technique to analyze bodily fluids in real time has implications for remote health monitoring.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Reports Physical Science
Cell Reports Physical Science Energy-Energy (all)
CiteScore
11.40
自引率
2.20%
发文量
388
审稿时长
62 days
期刊介绍: Cell Reports Physical Science, a premium open-access journal from Cell Press, features high-quality, cutting-edge research spanning the physical sciences. It serves as an open forum fostering collaboration among physical scientists while championing open science principles. Published works must signify significant advancements in fundamental insight or technological applications within fields such as chemistry, physics, materials science, energy science, engineering, and related interdisciplinary studies. In addition to longer articles, the journal considers impactful short-form reports and short reviews covering recent literature in emerging fields. Continually adapting to the evolving open science landscape, the journal reviews its policies to align with community consensus and best practices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信