木屑流动模型的参数敏感性

IF 1.6 4区 工程技术 Q3 ENGINEERING, CHEMICAL
Sofia Evysdotter, Tomas Vikström, Anders Rasmuson
{"title":"木屑流动模型的参数敏感性","authors":"Sofia Evysdotter,&nbsp;Tomas Vikström,&nbsp;Anders Rasmuson","doi":"10.1002/cjce.25435","DOIUrl":null,"url":null,"abstract":"<p>A computational fluid dynamics (CFD) study of the parameter sensitivity of a wood chips model was performed on an industrial impregnation vessel, which is the first step in a continuous cooking system. The solid and liquid phases were both treated as continua and it was found that the continuum model for the solid wood chips phase could capture the previously observed oscillating formation of arches in the contracting part of the vessel, which will occur at different levels of volume fraction depending on the material constants. The parameters that were examined are the solid pressure, permeability, viscosity, and wall friction. It was found that all the parameters strongly affect the distribution of the wood chips in the vessel as well as the oscillation effects, hence also the flow field which is important to accurately predict in order to ensure optimal performance of the impregnation vessel. Thus, correct material data for these types of simulations are crucial to the outcome and should be chosen for the appropriate situation and bio-material.</p>","PeriodicalId":9400,"journal":{"name":"Canadian Journal of Chemical Engineering","volume":"103 2","pages":"868-879"},"PeriodicalIF":1.6000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cjce.25435","citationCount":"0","resultStr":"{\"title\":\"Parameter sensitivity of a wood chips flow model\",\"authors\":\"Sofia Evysdotter,&nbsp;Tomas Vikström,&nbsp;Anders Rasmuson\",\"doi\":\"10.1002/cjce.25435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A computational fluid dynamics (CFD) study of the parameter sensitivity of a wood chips model was performed on an industrial impregnation vessel, which is the first step in a continuous cooking system. The solid and liquid phases were both treated as continua and it was found that the continuum model for the solid wood chips phase could capture the previously observed oscillating formation of arches in the contracting part of the vessel, which will occur at different levels of volume fraction depending on the material constants. The parameters that were examined are the solid pressure, permeability, viscosity, and wall friction. It was found that all the parameters strongly affect the distribution of the wood chips in the vessel as well as the oscillation effects, hence also the flow field which is important to accurately predict in order to ensure optimal performance of the impregnation vessel. Thus, correct material data for these types of simulations are crucial to the outcome and should be chosen for the appropriate situation and bio-material.</p>\",\"PeriodicalId\":9400,\"journal\":{\"name\":\"Canadian Journal of Chemical Engineering\",\"volume\":\"103 2\",\"pages\":\"868-879\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cjce.25435\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cjce.25435\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjce.25435","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

对木片模型的参数敏感性进行了计算流体动力学(CFD)研究,研究对象是工业浸渍容器,这是连续蒸煮系统的第一步。固相和液相都被视为连续体,研究发现,固态木屑相的连续体模型可以捕捉到之前观察到的容器收缩部分形成拱形的振荡现象,根据材料常数的不同,这种现象会在不同的体积分数水平下出现。研究的参数包括固体压力、渗透性、粘度和壁面摩擦力。研究发现,所有参数都会对木片在容器中的分布以及振荡效应产生强烈影响,因此也会影响流场,而为了确保浸渍容器的最佳性能,准确预测流场非常重要。因此,此类模拟的正确材料数据对模拟结果至关重要,应根据具体情况和生物材料进行选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Parameter sensitivity of a wood chips flow model

Parameter sensitivity of a wood chips flow model

A computational fluid dynamics (CFD) study of the parameter sensitivity of a wood chips model was performed on an industrial impregnation vessel, which is the first step in a continuous cooking system. The solid and liquid phases were both treated as continua and it was found that the continuum model for the solid wood chips phase could capture the previously observed oscillating formation of arches in the contracting part of the vessel, which will occur at different levels of volume fraction depending on the material constants. The parameters that were examined are the solid pressure, permeability, viscosity, and wall friction. It was found that all the parameters strongly affect the distribution of the wood chips in the vessel as well as the oscillation effects, hence also the flow field which is important to accurately predict in order to ensure optimal performance of the impregnation vessel. Thus, correct material data for these types of simulations are crucial to the outcome and should be chosen for the appropriate situation and bio-material.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Canadian Journal of Chemical Engineering
Canadian Journal of Chemical Engineering 工程技术-工程:化工
CiteScore
3.60
自引率
14.30%
发文量
448
审稿时长
3.2 months
期刊介绍: The Canadian Journal of Chemical Engineering (CJChE) publishes original research articles, new theoretical interpretation or experimental findings and critical reviews in the science or industrial practice of chemical and biochemical processes. Preference is given to papers having a clearly indicated scope and applicability in any of the following areas: Fluid mechanics, heat and mass transfer, multiphase flows, separations processes, thermodynamics, process systems engineering, reactors and reaction kinetics, catalysis, interfacial phenomena, electrochemical phenomena, bioengineering, minerals processing and natural products and environmental and energy engineering. Papers that merely describe or present a conventional or routine analysis of existing processes will not be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信