{"title":"核桃木蒸煮:冷凝物的化学成分和抗氧化活性,以评估其潜在用途","authors":"Goran Milić, Milica Rančić, Nebojša Todorović, Nemanja Živanović, Dejan Orčić, Nataša Simin","doi":"10.1007/s00226-024-01584-9","DOIUrl":null,"url":null,"abstract":"<div><p>Steaming of green timber, a common industrial process for various hardwood species, significantly influences wood properties, including coloration and drying characteristics. However, the environmental implications of substantial volumes of condensate generated during wood steaming underscore the urgency for its sustainable management. This study explores the chemical composition of the condensate obtained during the 90-hour indirect steaming of walnut timber (WTSC), aiming to identify potential applications for this wastewater while addressing environmental risks. Chemical characterization of WTSC included qualitative LC-MS/MS analysis, determination of the total phenolic content (TPC), total flavonoid content (TFC) and the content of selected phenolics. WTSC exhibited high TPC (188 mg gallic acid equivalents per L) and TFC (9.74 mg quercetin equivalents per L) values. Additionally, WTSC showed significant antioxidant activity (IC<sub>50</sub> (DPPH) = 61.4 µg/mL and 103 µg ascorbic acid equivalents per mL in FRAP assay). Specific phenolic compounds detected in the WTSC distinguish it from other wood industry effluents and are a consequence of the unique characteristics of walnut wood and conditions during steaming process. A variety of acids (<i>p-</i>hydroxybenzoic, protocatechuic, syringic, gallic, cinnamic, cinnamic, p-coumaric, o-coumaric, vanillic) and flavonoids (apigenin, genistein, naringenin, luteolin, kaempferol, chrysoeriol, isorhamnetin, apigenin 7-O-glucoside, vitexin, kaempferol 3-O-glucoside, catechin, epicatechin, and quercitrin) were identified and quantified. The condensate exhibited higher TPC value and antioxidant activity than other wood industry effluents, positioning it as a promising natural antioxidant with potential applications in pharmaceutical and food industries. However, our short-term goal is to explore the potential use of WTSC as received – without isolating individual compounds – in studies focused on plant protection, textile dyeing, and wood-based panel production.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"58 4","pages":"1605 - 1628"},"PeriodicalIF":3.1000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Walnut wood steaming: chemical profile and antioxidant activity of the condensate to assess the potential application\",\"authors\":\"Goran Milić, Milica Rančić, Nebojša Todorović, Nemanja Živanović, Dejan Orčić, Nataša Simin\",\"doi\":\"10.1007/s00226-024-01584-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Steaming of green timber, a common industrial process for various hardwood species, significantly influences wood properties, including coloration and drying characteristics. However, the environmental implications of substantial volumes of condensate generated during wood steaming underscore the urgency for its sustainable management. This study explores the chemical composition of the condensate obtained during the 90-hour indirect steaming of walnut timber (WTSC), aiming to identify potential applications for this wastewater while addressing environmental risks. Chemical characterization of WTSC included qualitative LC-MS/MS analysis, determination of the total phenolic content (TPC), total flavonoid content (TFC) and the content of selected phenolics. WTSC exhibited high TPC (188 mg gallic acid equivalents per L) and TFC (9.74 mg quercetin equivalents per L) values. Additionally, WTSC showed significant antioxidant activity (IC<sub>50</sub> (DPPH) = 61.4 µg/mL and 103 µg ascorbic acid equivalents per mL in FRAP assay). Specific phenolic compounds detected in the WTSC distinguish it from other wood industry effluents and are a consequence of the unique characteristics of walnut wood and conditions during steaming process. A variety of acids (<i>p-</i>hydroxybenzoic, protocatechuic, syringic, gallic, cinnamic, cinnamic, p-coumaric, o-coumaric, vanillic) and flavonoids (apigenin, genistein, naringenin, luteolin, kaempferol, chrysoeriol, isorhamnetin, apigenin 7-O-glucoside, vitexin, kaempferol 3-O-glucoside, catechin, epicatechin, and quercitrin) were identified and quantified. The condensate exhibited higher TPC value and antioxidant activity than other wood industry effluents, positioning it as a promising natural antioxidant with potential applications in pharmaceutical and food industries. However, our short-term goal is to explore the potential use of WTSC as received – without isolating individual compounds – in studies focused on plant protection, textile dyeing, and wood-based panel production.</p></div>\",\"PeriodicalId\":810,\"journal\":{\"name\":\"Wood Science and Technology\",\"volume\":\"58 4\",\"pages\":\"1605 - 1628\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wood Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00226-024-01584-9\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wood Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s00226-024-01584-9","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
Walnut wood steaming: chemical profile and antioxidant activity of the condensate to assess the potential application
Steaming of green timber, a common industrial process for various hardwood species, significantly influences wood properties, including coloration and drying characteristics. However, the environmental implications of substantial volumes of condensate generated during wood steaming underscore the urgency for its sustainable management. This study explores the chemical composition of the condensate obtained during the 90-hour indirect steaming of walnut timber (WTSC), aiming to identify potential applications for this wastewater while addressing environmental risks. Chemical characterization of WTSC included qualitative LC-MS/MS analysis, determination of the total phenolic content (TPC), total flavonoid content (TFC) and the content of selected phenolics. WTSC exhibited high TPC (188 mg gallic acid equivalents per L) and TFC (9.74 mg quercetin equivalents per L) values. Additionally, WTSC showed significant antioxidant activity (IC50 (DPPH) = 61.4 µg/mL and 103 µg ascorbic acid equivalents per mL in FRAP assay). Specific phenolic compounds detected in the WTSC distinguish it from other wood industry effluents and are a consequence of the unique characteristics of walnut wood and conditions during steaming process. A variety of acids (p-hydroxybenzoic, protocatechuic, syringic, gallic, cinnamic, cinnamic, p-coumaric, o-coumaric, vanillic) and flavonoids (apigenin, genistein, naringenin, luteolin, kaempferol, chrysoeriol, isorhamnetin, apigenin 7-O-glucoside, vitexin, kaempferol 3-O-glucoside, catechin, epicatechin, and quercitrin) were identified and quantified. The condensate exhibited higher TPC value and antioxidant activity than other wood industry effluents, positioning it as a promising natural antioxidant with potential applications in pharmaceutical and food industries. However, our short-term goal is to explore the potential use of WTSC as received – without isolating individual compounds – in studies focused on plant protection, textile dyeing, and wood-based panel production.
期刊介绍:
Wood Science and Technology publishes original scientific research results and review papers covering the entire field of wood material science, wood components and wood based products. Subjects are wood biology and wood quality, wood physics and physical technologies, wood chemistry and chemical technologies. Latest advances in areas such as cell wall and wood formation; structural and chemical composition of wood and wood composites and their property relations; physical, mechanical and chemical characterization and relevant methodological developments, and microbiological degradation of wood and wood based products are reported. Topics related to wood technology include machining, gluing, and finishing, composite technology, wood modification, wood mechanics, creep and rheology, and the conversion of wood into pulp and biorefinery products.