Xingyu Du;Nishant Sharma;Zichen Tang;Chloe Leblanc;Deep Jariwala;Roy H. Olsson
{"title":"在 SiC 上使用 AlScN 的近 6-GHz Sezawa 模式声表面波谐振器","authors":"Xingyu Du;Nishant Sharma;Zichen Tang;Chloe Leblanc;Deep Jariwala;Roy H. Olsson","doi":"10.1109/JMEMS.2024.3430984","DOIUrl":null,"url":null,"abstract":"Surface Acoustic Wave (SAW) devices featuring Aluminum Scandium Nitride (AlScN) on a 4H-Silicon Carbide (SiC) substrate, offer a unique blend of high sound velocity, low thermal resistance, substantial piezoelectric response, simplified fabrication, as well as suitability for high-temperature and harsh environment operation. This study presents high-frequency SAW resonators employing AlScN thin films on SiC substrates, utilizing the second SAW mode (referred to as the Sezawa mode). The resonators achieve remarkable performance, boasting a K\n<inline-formula> <tex-math>$^{\\mathrm {2}}$ </tex-math></inline-formula>\n value of 5.5% at 4.7 GHz and a maximum Bode-Q (Q\n<inline-formula> <tex-math>$_{\\mathrm {max}}$ </tex-math></inline-formula>\n) of 911 at 4.3 GHz, outperforming previous AlScN SAW devices. Additionally, a SAW resonator with a \n<inline-formula> <tex-math>$0.96~\\mu $ </tex-math></inline-formula>\nm wavelength attains 5.9 GHz frequency with K\n<inline-formula> <tex-math>$^{\\mathrm {2}}$ </tex-math></inline-formula>\n of 4.0% and Q\n<inline-formula> <tex-math>$_{\\mathrm {max}}$ </tex-math></inline-formula>\n of 762. Our study underscores the potential of the AlScN on SiC platform for advanced radio-frequency applications. [2024-0075]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"33 5","pages":"577-585"},"PeriodicalIF":2.5000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Near 6-GHz Sezawa Mode Surface Acoustic Wave Resonators Using AlScN on SiC\",\"authors\":\"Xingyu Du;Nishant Sharma;Zichen Tang;Chloe Leblanc;Deep Jariwala;Roy H. Olsson\",\"doi\":\"10.1109/JMEMS.2024.3430984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Surface Acoustic Wave (SAW) devices featuring Aluminum Scandium Nitride (AlScN) on a 4H-Silicon Carbide (SiC) substrate, offer a unique blend of high sound velocity, low thermal resistance, substantial piezoelectric response, simplified fabrication, as well as suitability for high-temperature and harsh environment operation. This study presents high-frequency SAW resonators employing AlScN thin films on SiC substrates, utilizing the second SAW mode (referred to as the Sezawa mode). The resonators achieve remarkable performance, boasting a K\\n<inline-formula> <tex-math>$^{\\\\mathrm {2}}$ </tex-math></inline-formula>\\n value of 5.5% at 4.7 GHz and a maximum Bode-Q (Q\\n<inline-formula> <tex-math>$_{\\\\mathrm {max}}$ </tex-math></inline-formula>\\n) of 911 at 4.3 GHz, outperforming previous AlScN SAW devices. Additionally, a SAW resonator with a \\n<inline-formula> <tex-math>$0.96~\\\\mu $ </tex-math></inline-formula>\\nm wavelength attains 5.9 GHz frequency with K\\n<inline-formula> <tex-math>$^{\\\\mathrm {2}}$ </tex-math></inline-formula>\\n of 4.0% and Q\\n<inline-formula> <tex-math>$_{\\\\mathrm {max}}$ </tex-math></inline-formula>\\n of 762. Our study underscores the potential of the AlScN on SiC platform for advanced radio-frequency applications. [2024-0075]\",\"PeriodicalId\":16621,\"journal\":{\"name\":\"Journal of Microelectromechanical Systems\",\"volume\":\"33 5\",\"pages\":\"577-585\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Microelectromechanical Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10617811/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microelectromechanical Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10617811/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Near 6-GHz Sezawa Mode Surface Acoustic Wave Resonators Using AlScN on SiC
Surface Acoustic Wave (SAW) devices featuring Aluminum Scandium Nitride (AlScN) on a 4H-Silicon Carbide (SiC) substrate, offer a unique blend of high sound velocity, low thermal resistance, substantial piezoelectric response, simplified fabrication, as well as suitability for high-temperature and harsh environment operation. This study presents high-frequency SAW resonators employing AlScN thin films on SiC substrates, utilizing the second SAW mode (referred to as the Sezawa mode). The resonators achieve remarkable performance, boasting a K
$^{\mathrm {2}}$
value of 5.5% at 4.7 GHz and a maximum Bode-Q (Q
$_{\mathrm {max}}$
) of 911 at 4.3 GHz, outperforming previous AlScN SAW devices. Additionally, a SAW resonator with a
$0.96~\mu $
m wavelength attains 5.9 GHz frequency with K
$^{\mathrm {2}}$
of 4.0% and Q
$_{\mathrm {max}}$
of 762. Our study underscores the potential of the AlScN on SiC platform for advanced radio-frequency applications. [2024-0075]
期刊介绍:
The topics of interest include, but are not limited to: devices ranging in size from microns to millimeters, IC-compatible fabrication techniques, other fabrication techniques, measurement of micro phenomena, theoretical results, new materials and designs, micro actuators, micro robots, micro batteries, bearings, wear, reliability, electrical interconnections, micro telemanipulation, and standards appropriate to MEMS. Application examples and application oriented devices in fluidics, optics, bio-medical engineering, etc., are also of central interest.