{"title":"量化双极论证图的贡献函数:基于原则的分析","authors":"Timotheus Kampik , Nico Potyka , Xiang Yin , Kristijonas Čyras , Francesca Toni","doi":"10.1016/j.ijar.2024.109255","DOIUrl":null,"url":null,"abstract":"<div><p>We present a principle-based analysis of <em>contribution functions</em> for quantitative bipolar argumentation graphs that quantify the contribution of one argument to another. The introduced principles formalise the intuitions underlying different contribution functions as well as expectations one would have regarding the behaviour of contribution functions in general. As none of the covered contribution functions satisfies all principles, our analysis can serve as a tool that enables the selection of the most suitable function based on the requirements of a given use case.</p></div>","PeriodicalId":13842,"journal":{"name":"International Journal of Approximate Reasoning","volume":"173 ","pages":"Article 109255"},"PeriodicalIF":3.2000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0888613X24001427/pdfft?md5=5ec783b3dc02357636d355c690cea7c0&pid=1-s2.0-S0888613X24001427-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Contribution functions for quantitative bipolar argumentation graphs: A principle-based analysis\",\"authors\":\"Timotheus Kampik , Nico Potyka , Xiang Yin , Kristijonas Čyras , Francesca Toni\",\"doi\":\"10.1016/j.ijar.2024.109255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present a principle-based analysis of <em>contribution functions</em> for quantitative bipolar argumentation graphs that quantify the contribution of one argument to another. The introduced principles formalise the intuitions underlying different contribution functions as well as expectations one would have regarding the behaviour of contribution functions in general. As none of the covered contribution functions satisfies all principles, our analysis can serve as a tool that enables the selection of the most suitable function based on the requirements of a given use case.</p></div>\",\"PeriodicalId\":13842,\"journal\":{\"name\":\"International Journal of Approximate Reasoning\",\"volume\":\"173 \",\"pages\":\"Article 109255\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0888613X24001427/pdfft?md5=5ec783b3dc02357636d355c690cea7c0&pid=1-s2.0-S0888613X24001427-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Approximate Reasoning\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0888613X24001427\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Approximate Reasoning","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888613X24001427","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Contribution functions for quantitative bipolar argumentation graphs: A principle-based analysis
We present a principle-based analysis of contribution functions for quantitative bipolar argumentation graphs that quantify the contribution of one argument to another. The introduced principles formalise the intuitions underlying different contribution functions as well as expectations one would have regarding the behaviour of contribution functions in general. As none of the covered contribution functions satisfies all principles, our analysis can serve as a tool that enables the selection of the most suitable function based on the requirements of a given use case.
期刊介绍:
The International Journal of Approximate Reasoning is intended to serve as a forum for the treatment of imprecision and uncertainty in Artificial and Computational Intelligence, covering both the foundations of uncertainty theories, and the design of intelligent systems for scientific and engineering applications. It publishes high-quality research papers describing theoretical developments or innovative applications, as well as review articles on topics of general interest.
Relevant topics include, but are not limited to, probabilistic reasoning and Bayesian networks, imprecise probabilities, random sets, belief functions (Dempster-Shafer theory), possibility theory, fuzzy sets, rough sets, decision theory, non-additive measures and integrals, qualitative reasoning about uncertainty, comparative probability orderings, game-theoretic probability, default reasoning, nonstandard logics, argumentation systems, inconsistency tolerant reasoning, elicitation techniques, philosophical foundations and psychological models of uncertain reasoning.
Domains of application for uncertain reasoning systems include risk analysis and assessment, information retrieval and database design, information fusion, machine learning, data and web mining, computer vision, image and signal processing, intelligent data analysis, statistics, multi-agent systems, etc.