重质石油馏分的分子重构:贝叶斯方法

IF 5.3 3区 工程技术 Q2 ENERGY & FUELS
Helton S. Maciel, Diego T. Fernandes, Charlles R. A. Abreu, Argimiro R. Secchi, Frederico W. Tavares
{"title":"重质石油馏分的分子重构:贝叶斯方法","authors":"Helton S. Maciel, Diego T. Fernandes, Charlles R. A. Abreu, Argimiro R. Secchi, Frederico W. Tavares","doi":"10.1021/acs.energyfuels.4c00889","DOIUrl":null,"url":null,"abstract":"We developed molecular stochastic reconstruction algorithms from a Bayesian perspective. The parameter estimation of stochastic reconstruction models is a challenge due to their intractable likelihood functions. The use of the Bayesian optimization framework for likelihood-free inference provides us with a natural method for uncertainty propagation and model regularization, which reduces overfitting issues. Using only 9 parameters, the model was able to represent the properties of all vacuum residues studied in this work, both for the properties provided to the model, such as molecular weight, elemental analysis, SARA fractions, simplified nuclear magnetic resonance, and simulated distillation and for the properties not provided, such as full magnetic resonance. The posterior distributions of the parameters and properties showed the prediction uncertainties of the model with the credible intervals containing both constrained and unconstrained observed properties, thereby confirming its robustness. Besides, the posterior predictive mean was shown to be a good estimator for the observed properties.","PeriodicalId":35,"journal":{"name":"Energy & Fuels","volume":"66 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Reconstruction of Heavy Petroleum Fractions: A Bayesian Approach\",\"authors\":\"Helton S. Maciel, Diego T. Fernandes, Charlles R. A. Abreu, Argimiro R. Secchi, Frederico W. Tavares\",\"doi\":\"10.1021/acs.energyfuels.4c00889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We developed molecular stochastic reconstruction algorithms from a Bayesian perspective. The parameter estimation of stochastic reconstruction models is a challenge due to their intractable likelihood functions. The use of the Bayesian optimization framework for likelihood-free inference provides us with a natural method for uncertainty propagation and model regularization, which reduces overfitting issues. Using only 9 parameters, the model was able to represent the properties of all vacuum residues studied in this work, both for the properties provided to the model, such as molecular weight, elemental analysis, SARA fractions, simplified nuclear magnetic resonance, and simulated distillation and for the properties not provided, such as full magnetic resonance. The posterior distributions of the parameters and properties showed the prediction uncertainties of the model with the credible intervals containing both constrained and unconstrained observed properties, thereby confirming its robustness. Besides, the posterior predictive mean was shown to be a good estimator for the observed properties.\",\"PeriodicalId\":35,\"journal\":{\"name\":\"Energy & Fuels\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Fuels\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.energyfuels.4c00889\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Fuels","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acs.energyfuels.4c00889","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

我们从贝叶斯的角度开发了分子随机重建算法。由于随机重构模型的似然函数难以理解,因此其参数估计是一项挑战。使用贝叶斯优化框架进行无似然推理,为我们提供了不确定性传播和模型正则化的自然方法,从而减少了过拟合问题。该模型仅使用了 9 个参数,就能代表本研究中研究的所有真空残留物的性质,既包括提供给模型的性质,如分子量、元素分析、SARA 分数、简化核磁共振和模拟蒸馏,也包括未提供的性质,如全磁共振。参数和性质的后验分布显示了模型的预测不确定性,可信区间包含受限和非受限的观测性质,从而证实了模型的稳健性。此外,后验预测均值被证明是观测属性的良好估计值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Molecular Reconstruction of Heavy Petroleum Fractions: A Bayesian Approach

Molecular Reconstruction of Heavy Petroleum Fractions: A Bayesian Approach
We developed molecular stochastic reconstruction algorithms from a Bayesian perspective. The parameter estimation of stochastic reconstruction models is a challenge due to their intractable likelihood functions. The use of the Bayesian optimization framework for likelihood-free inference provides us with a natural method for uncertainty propagation and model regularization, which reduces overfitting issues. Using only 9 parameters, the model was able to represent the properties of all vacuum residues studied in this work, both for the properties provided to the model, such as molecular weight, elemental analysis, SARA fractions, simplified nuclear magnetic resonance, and simulated distillation and for the properties not provided, such as full magnetic resonance. The posterior distributions of the parameters and properties showed the prediction uncertainties of the model with the credible intervals containing both constrained and unconstrained observed properties, thereby confirming its robustness. Besides, the posterior predictive mean was shown to be a good estimator for the observed properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy & Fuels
Energy & Fuels 工程技术-工程:化工
CiteScore
9.20
自引率
13.20%
发文量
1101
审稿时长
2.1 months
期刊介绍: Energy & Fuels publishes reports of research in the technical area defined by the intersection of the disciplines of chemistry and chemical engineering and the application domain of non-nuclear energy and fuels. This includes research directed at the formation of, exploration for, and production of fossil fuels and biomass; the properties and structure or molecular composition of both raw fuels and refined products; the chemistry involved in the processing and utilization of fuels; fuel cells and their applications; and the analytical and instrumental techniques used in investigations of the foregoing areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信