Zhou Yu, Shuangxi Feng, Qixiang Zhang, Bin Tang, Jiliang Mo, Song Zhu, Wenwei Jin
{"title":"摩擦块形状对低温下列车制动器界面摩擦引起的磨损、振动和噪音的影响","authors":"Zhou Yu, Shuangxi Feng, Qixiang Zhang, Bin Tang, Jiliang Mo, Song Zhu, Wenwei Jin","doi":"10.1007/s11249-024-01897-7","DOIUrl":null,"url":null,"abstract":"<div><p>On specific railway lines, trains are faced with the challenge of low-temperature environments. However, it is still unclear how the low-temperature service environment affects the friction-induced wear and vibration behavior at the train braking interface. Similarly, the impact of the brake pad friction block shape under low temperatures on this behavior is not well understood. This lack of knowledge adversely affects the operation, maintenance, and use of brake pads in low-temperature environments. Therefore, test samples of friction blocks were designed and processed based on several commonly used friction block shapes for trains (ellipse, triangle, and pentagon). Parking brake tests were conducted on a self-developed test bench with controllable temperature, exploring how different shapes affect friction-induced wear, vibration, and noise at the train braking interface under low temperatures (− 20 °C). The results showed that under the effects of low-temperature environments, the shape of the friction block significantly affects the friction-induced wear and vibration noise of the braking interface. Among them, the elliptical friction block has a smaller eccentric wear angle, a smaller and evenly distributed contact plateau area, relatively minor surface wear, and produces low-intensity vibration noise with small fluctuations. In contrast, the triangular and pentagonal friction blocks have larger eccentric wear angles, larger and concentrated contact plateau areas, relatively severe surface wear, and generate high-intensity vibration noise with large fluctuations. Analyzing the reasons, it is found that under the combined effects of low-temperature conditions and different shapes, the friction-induced wear on the surface of the friction block changes, thus exciting different intensities of vibration and noise.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effects of Friction Block Shape on Friction-Induced Wear, Vibration, and Noise of Train Brake Interface at Low Temperature\",\"authors\":\"Zhou Yu, Shuangxi Feng, Qixiang Zhang, Bin Tang, Jiliang Mo, Song Zhu, Wenwei Jin\",\"doi\":\"10.1007/s11249-024-01897-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>On specific railway lines, trains are faced with the challenge of low-temperature environments. However, it is still unclear how the low-temperature service environment affects the friction-induced wear and vibration behavior at the train braking interface. Similarly, the impact of the brake pad friction block shape under low temperatures on this behavior is not well understood. This lack of knowledge adversely affects the operation, maintenance, and use of brake pads in low-temperature environments. Therefore, test samples of friction blocks were designed and processed based on several commonly used friction block shapes for trains (ellipse, triangle, and pentagon). Parking brake tests were conducted on a self-developed test bench with controllable temperature, exploring how different shapes affect friction-induced wear, vibration, and noise at the train braking interface under low temperatures (− 20 °C). The results showed that under the effects of low-temperature environments, the shape of the friction block significantly affects the friction-induced wear and vibration noise of the braking interface. Among them, the elliptical friction block has a smaller eccentric wear angle, a smaller and evenly distributed contact plateau area, relatively minor surface wear, and produces low-intensity vibration noise with small fluctuations. In contrast, the triangular and pentagonal friction blocks have larger eccentric wear angles, larger and concentrated contact plateau areas, relatively severe surface wear, and generate high-intensity vibration noise with large fluctuations. Analyzing the reasons, it is found that under the combined effects of low-temperature conditions and different shapes, the friction-induced wear on the surface of the friction block changes, thus exciting different intensities of vibration and noise.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":806,\"journal\":{\"name\":\"Tribology Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tribology Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11249-024-01897-7\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology Letters","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11249-024-01897-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
The Effects of Friction Block Shape on Friction-Induced Wear, Vibration, and Noise of Train Brake Interface at Low Temperature
On specific railway lines, trains are faced with the challenge of low-temperature environments. However, it is still unclear how the low-temperature service environment affects the friction-induced wear and vibration behavior at the train braking interface. Similarly, the impact of the brake pad friction block shape under low temperatures on this behavior is not well understood. This lack of knowledge adversely affects the operation, maintenance, and use of brake pads in low-temperature environments. Therefore, test samples of friction blocks were designed and processed based on several commonly used friction block shapes for trains (ellipse, triangle, and pentagon). Parking brake tests were conducted on a self-developed test bench with controllable temperature, exploring how different shapes affect friction-induced wear, vibration, and noise at the train braking interface under low temperatures (− 20 °C). The results showed that under the effects of low-temperature environments, the shape of the friction block significantly affects the friction-induced wear and vibration noise of the braking interface. Among them, the elliptical friction block has a smaller eccentric wear angle, a smaller and evenly distributed contact plateau area, relatively minor surface wear, and produces low-intensity vibration noise with small fluctuations. In contrast, the triangular and pentagonal friction blocks have larger eccentric wear angles, larger and concentrated contact plateau areas, relatively severe surface wear, and generate high-intensity vibration noise with large fluctuations. Analyzing the reasons, it is found that under the combined effects of low-temperature conditions and different shapes, the friction-induced wear on the surface of the friction block changes, thus exciting different intensities of vibration and noise.
期刊介绍:
Tribology Letters is devoted to the development of the science of tribology and its applications, particularly focusing on publishing high-quality papers at the forefront of tribological science and that address the fundamentals of friction, lubrication, wear, or adhesion. The journal facilitates communication and exchange of seminal ideas among thousands of practitioners who are engaged worldwide in the pursuit of tribology-based science and technology.