{"title":"低铂含量的 PtPdAg 纳米树在甲酸和甲醇电氧化中具有高 CO 耐受性","authors":"Yu-Fei Wang, Shou-Lin Zhang, Yu-Xin Deng, Shi-Han Luan, Cai-Kang Wang, Lin-Fei Ding, Xian Jiang, Dong-Mei Sun, Ya-Wen Tang","doi":"10.1007/s12598-024-02921-4","DOIUrl":null,"url":null,"abstract":"<p>To efficiently diminish the Pt consumption while concurrently enhancing the anodic reaction kinetics, a straightforward synthesis for PtPdAg nanotrees (NTs) with exceedingly low Pt content is presented, utilizing the galvanic replacement reaction between the initially prepared PdAg NTs and Pt ions. Due to the multilevel porous tree-like structure and the incorporation of low amounts of Pt, the electrocatalytic activity and stability of PtPdAg NTs are markedly enhanced, achieving 1.65 and 1.69 A·mg<sup>−1</sup><sub>Pt + Pd</sub> for the anodic reactions of formic acid oxidation (FAOR) and methanol oxidation (MOR) within DLFCs, surpassing the performance of PdAg NTs, as well as that of commercial Pt and Pd black. Density functional theory (DFT) calculations reveal that the addition of low amounts of Pt leads to an increase in the d-band center of PtPdAg NTs and lower the CO<sub>ads</sub> adsorption energy to −1.23 eV, enhancing the anti-CO toxicity properties optimally. This approach offers an effective means for designing low Pt catalysts as exceptional anodic electrocatalysts for direct liquid fuel cells.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"21 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PtPdAg nanotrees with low Pt content for high CO tolerance within formic acid and methanol electrooxidation\",\"authors\":\"Yu-Fei Wang, Shou-Lin Zhang, Yu-Xin Deng, Shi-Han Luan, Cai-Kang Wang, Lin-Fei Ding, Xian Jiang, Dong-Mei Sun, Ya-Wen Tang\",\"doi\":\"10.1007/s12598-024-02921-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To efficiently diminish the Pt consumption while concurrently enhancing the anodic reaction kinetics, a straightforward synthesis for PtPdAg nanotrees (NTs) with exceedingly low Pt content is presented, utilizing the galvanic replacement reaction between the initially prepared PdAg NTs and Pt ions. Due to the multilevel porous tree-like structure and the incorporation of low amounts of Pt, the electrocatalytic activity and stability of PtPdAg NTs are markedly enhanced, achieving 1.65 and 1.69 A·mg<sup>−1</sup><sub>Pt + Pd</sub> for the anodic reactions of formic acid oxidation (FAOR) and methanol oxidation (MOR) within DLFCs, surpassing the performance of PdAg NTs, as well as that of commercial Pt and Pd black. Density functional theory (DFT) calculations reveal that the addition of low amounts of Pt leads to an increase in the d-band center of PtPdAg NTs and lower the CO<sub>ads</sub> adsorption energy to −1.23 eV, enhancing the anti-CO toxicity properties optimally. This approach offers an effective means for designing low Pt catalysts as exceptional anodic electrocatalysts for direct liquid fuel cells.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\\n\",\"PeriodicalId\":749,\"journal\":{\"name\":\"Rare Metals\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rare Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s12598-024-02921-4\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12598-024-02921-4","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
为了在提高阳极反应动力学的同时有效减少铂的消耗,本研究利用最初制备的铂钯银纳米树与铂离子之间的电化学置换反应,提出了一种铂含量极低的铂钯银纳米树(NTs)的直接合成方法。由于铂钯银纳米树具有多级多孔树状结构,且铂的含量较低,因此铂钯银纳米树的电催化活性和稳定性明显增强,在 DLFCs 中的甲酸氧化(FAOR)和甲醇氧化(MOR)阳极反应中,铂钯银纳米树的电催化活性和稳定性分别达到了 1.65 和 1.69 A-mg-1Pt + Pd,超过了铂钯银纳米树以及商用铂黑和钯黑的性能。密度泛函理论(DFT)计算显示,低量铂的添加会导致铂钯银氮氧化物的 d 带中心增大,并将 COads 吸附能降低到 -1.23 eV,从而优化增强了抗 CO 毒性。这种方法为设计低铂催化剂作为直接液体燃料电池的特殊阳极电催化剂提供了有效手段。
PtPdAg nanotrees with low Pt content for high CO tolerance within formic acid and methanol electrooxidation
To efficiently diminish the Pt consumption while concurrently enhancing the anodic reaction kinetics, a straightforward synthesis for PtPdAg nanotrees (NTs) with exceedingly low Pt content is presented, utilizing the galvanic replacement reaction between the initially prepared PdAg NTs and Pt ions. Due to the multilevel porous tree-like structure and the incorporation of low amounts of Pt, the electrocatalytic activity and stability of PtPdAg NTs are markedly enhanced, achieving 1.65 and 1.69 A·mg−1Pt + Pd for the anodic reactions of formic acid oxidation (FAOR) and methanol oxidation (MOR) within DLFCs, surpassing the performance of PdAg NTs, as well as that of commercial Pt and Pd black. Density functional theory (DFT) calculations reveal that the addition of low amounts of Pt leads to an increase in the d-band center of PtPdAg NTs and lower the COads adsorption energy to −1.23 eV, enhancing the anti-CO toxicity properties optimally. This approach offers an effective means for designing low Pt catalysts as exceptional anodic electrocatalysts for direct liquid fuel cells.
期刊介绍:
Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.