自旋共弦与 I 型/异相弦理论的规群

Christian Kneissl
{"title":"自旋共弦与 I 型/异相弦理论的规群","authors":"Christian Kneissl","doi":"arxiv-2407.20333","DOIUrl":null,"url":null,"abstract":"Cobordism offers an unique perspective into the non-perturbative sector of\nstring theory by demanding the absence of higher form global symmetries for\nquantum gravitational consistency. In this work we compute the spin cobordism\ngroups of the classifying space of $Spin(32)/\\mathbb{Z}_2$ relevant to\ndescribing type I/heterotic string theory and explore their (shared)\nnon-perturbative sector. To facilitate this we leverage our knowledge of type I\nD-brane physics behind the related ko-homology. The computation utilizes\nseveral established tools from algebraic topology, the focus here is on two\nspectral sequences. First, the Eilenberg-Moore spectral sequence is used to\nobtain the cohomology of the classifying space of the $Spin(32)/\\mathbb{Z}_2$\nwith $\\mathbb{Z}_2$ coefficients. This will enable us to start the Adams\nspectral sequence for finally obtaining our result, the spin cobordism groups.\nWe conclude by providing a string theoretic interpretation to the cobordism\ngroups.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spin cobordism and the gauge group of type I/heterotic string theory\",\"authors\":\"Christian Kneissl\",\"doi\":\"arxiv-2407.20333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cobordism offers an unique perspective into the non-perturbative sector of\\nstring theory by demanding the absence of higher form global symmetries for\\nquantum gravitational consistency. In this work we compute the spin cobordism\\ngroups of the classifying space of $Spin(32)/\\\\mathbb{Z}_2$ relevant to\\ndescribing type I/heterotic string theory and explore their (shared)\\nnon-perturbative sector. To facilitate this we leverage our knowledge of type I\\nD-brane physics behind the related ko-homology. The computation utilizes\\nseveral established tools from algebraic topology, the focus here is on two\\nspectral sequences. First, the Eilenberg-Moore spectral sequence is used to\\nobtain the cohomology of the classifying space of the $Spin(32)/\\\\mathbb{Z}_2$\\nwith $\\\\mathbb{Z}_2$ coefficients. This will enable us to start the Adams\\nspectral sequence for finally obtaining our result, the spin cobordism groups.\\nWe conclude by providing a string theoretic interpretation to the cobordism\\ngroups.\",\"PeriodicalId\":501119,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Topology\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.20333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.20333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自旋共线性通过要求量子引力一致性不存在更高形式的全局对称性,为弦理论的非微扰部门提供了一个独特的视角。在这项工作中,我们计算了与描述I型/异相弦理论有关的$Spin(32)/\mathbb{Z}_2$分类空间的自旋共线性群,并探索了它们的(共享)非扰动部门。为此,我们利用了相关ko-homology背后的ID型膜物理知识。计算利用了代数拓扑学的多种既定工具,这里的重点是两个谱序列。首先,我们利用艾伦伯格-摩尔谱序列(Eilenberg-Moore spectral sequence)来获得具有$\mathbb{Z}_2$系数的$Spin(32)/\mathbb{Z}_2$分类空间的同调。这将使我们能够启动亚当谱序列,最终得到我们的结果--自旋共线群。最后,我们将对共线群进行弦理论解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spin cobordism and the gauge group of type I/heterotic string theory
Cobordism offers an unique perspective into the non-perturbative sector of string theory by demanding the absence of higher form global symmetries for quantum gravitational consistency. In this work we compute the spin cobordism groups of the classifying space of $Spin(32)/\mathbb{Z}_2$ relevant to describing type I/heterotic string theory and explore their (shared) non-perturbative sector. To facilitate this we leverage our knowledge of type I D-brane physics behind the related ko-homology. The computation utilizes several established tools from algebraic topology, the focus here is on two spectral sequences. First, the Eilenberg-Moore spectral sequence is used to obtain the cohomology of the classifying space of the $Spin(32)/\mathbb{Z}_2$ with $\mathbb{Z}_2$ coefficients. This will enable us to start the Adams spectral sequence for finally obtaining our result, the spin cobordism groups. We conclude by providing a string theoretic interpretation to the cobordism groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信