非无限类型的最小沙利文代数与其实现之间不存在准同构关系

Jiawei Zhou
{"title":"非无限类型的最小沙利文代数与其实现之间不存在准同构关系","authors":"Jiawei Zhou","doi":"arxiv-2407.20881","DOIUrl":null,"url":null,"abstract":"We prove that the morphisms from a minimal Sullivan algebra of non-finite\ntype to the algebra of polynomial differential forms on its realization cannot\nbe quasi-isomorphic. This provides a positive answer to a question posed by\nF\\'elix, Halperin and Thomas. Furthermore, we give some discussion about the\nrelationship between the homotopy groups of a topological space and its minimal\nSullivan model.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"No quasi-isomorphism between a minimal Sullivan algebra of non-finite type and its realization\",\"authors\":\"Jiawei Zhou\",\"doi\":\"arxiv-2407.20881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that the morphisms from a minimal Sullivan algebra of non-finite\\ntype to the algebra of polynomial differential forms on its realization cannot\\nbe quasi-isomorphic. This provides a positive answer to a question posed by\\nF\\\\'elix, Halperin and Thomas. Furthermore, we give some discussion about the\\nrelationship between the homotopy groups of a topological space and its minimal\\nSullivan model.\",\"PeriodicalId\":501119,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Topology\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.20881\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.20881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,从一个非终极类型的极小沙利文代数到其实现上的多项式微分形式代数的变形不可能是准同构的。这为F\'elix、Halperin和Thomas提出的一个问题提供了肯定的答案。此外,我们还讨论了拓扑空间的同调群与其最小沙利文模型之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
No quasi-isomorphism between a minimal Sullivan algebra of non-finite type and its realization
We prove that the morphisms from a minimal Sullivan algebra of non-finite type to the algebra of polynomial differential forms on its realization cannot be quasi-isomorphic. This provides a positive answer to a question posed by F\'elix, Halperin and Thomas. Furthermore, we give some discussion about the relationship between the homotopy groups of a topological space and its minimal Sullivan model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信