代数 K 理论中的哈密顿元

Yasha Savelyev
{"title":"代数 K 理论中的哈密顿元","authors":"Yasha Savelyev","doi":"arxiv-2407.21003","DOIUrl":null,"url":null,"abstract":"Recall that topological complex $K$-theory associates to an isomorphism class\nof a complex vector bundle $E$ over a space $X$ an element of the complex\n$K$-theory group of $X$. Or from algebraic $K$-theory perspective, one assigns\na homotopy class $[X \\to K (\\mathcal{K})]$, where $\\mathcal{K}$ is the ring of\ncompact operators on the Hilbert space. We show that there is an analogous\nstory for algebraic $K$-theory of a general commutative ring $k$, replacing\ncomplex vector bundles by certain Hamiltonian fiber bundles. The construction\nactually first assigns elements in a certain categorified algebraic $K$-theory,\nanalogous to To\\\"en's secondary $K$-theory of $k$. And there is a natural map\nfrom this categorified algebraic $K$-theory to the classical variant.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"188 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hamiltonian elements in algebraic K-theory\",\"authors\":\"Yasha Savelyev\",\"doi\":\"arxiv-2407.21003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recall that topological complex $K$-theory associates to an isomorphism class\\nof a complex vector bundle $E$ over a space $X$ an element of the complex\\n$K$-theory group of $X$. Or from algebraic $K$-theory perspective, one assigns\\na homotopy class $[X \\\\to K (\\\\mathcal{K})]$, where $\\\\mathcal{K}$ is the ring of\\ncompact operators on the Hilbert space. We show that there is an analogous\\nstory for algebraic $K$-theory of a general commutative ring $k$, replacing\\ncomplex vector bundles by certain Hamiltonian fiber bundles. The construction\\nactually first assigns elements in a certain categorified algebraic $K$-theory,\\nanalogous to To\\\\\\\"en's secondary $K$-theory of $k$. And there is a natural map\\nfrom this categorified algebraic $K$-theory to the classical variant.\",\"PeriodicalId\":501119,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Topology\",\"volume\":\"188 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.21003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.21003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

回想一下,拓扑复数 $K$ 理论会把一个空间 $X$ 上的复向量束 $E$ 的同构类与 $X$ 的复数 $K$ 理论群的一个元素联系起来。或者从代数$K$理论的角度来看,我们会分配一个同构类$[X \to K (\mathcal{K})]$,其中$\mathcal{K}$是希尔伯特空间上的紧凑算子环。我们证明,在一般交换环 $k$ 的代数 $K$ 理论中,有一个类似的故事,即用某些哈密顿纤维束代替复向量束。这种构造实际上是先在某个分类代数 $K$ 理论中分配元素,类似于 To\"en 的 $k$ 的二级 $K$ 理论。从这个分类代数$K$理论到经典变体有一个自然的映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hamiltonian elements in algebraic K-theory
Recall that topological complex $K$-theory associates to an isomorphism class of a complex vector bundle $E$ over a space $X$ an element of the complex $K$-theory group of $X$. Or from algebraic $K$-theory perspective, one assigns a homotopy class $[X \to K (\mathcal{K})]$, where $\mathcal{K}$ is the ring of compact operators on the Hilbert space. We show that there is an analogous story for algebraic $K$-theory of a general commutative ring $k$, replacing complex vector bundles by certain Hamiltonian fiber bundles. The construction actually first assigns elements in a certain categorified algebraic $K$-theory, analogous to To\"en's secondary $K$-theory of $k$. And there is a natural map from this categorified algebraic $K$-theory to the classical variant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信