{"title":"代数 K 理论中的哈密顿元","authors":"Yasha Savelyev","doi":"arxiv-2407.21003","DOIUrl":null,"url":null,"abstract":"Recall that topological complex $K$-theory associates to an isomorphism class\nof a complex vector bundle $E$ over a space $X$ an element of the complex\n$K$-theory group of $X$. Or from algebraic $K$-theory perspective, one assigns\na homotopy class $[X \\to K (\\mathcal{K})]$, where $\\mathcal{K}$ is the ring of\ncompact operators on the Hilbert space. We show that there is an analogous\nstory for algebraic $K$-theory of a general commutative ring $k$, replacing\ncomplex vector bundles by certain Hamiltonian fiber bundles. The construction\nactually first assigns elements in a certain categorified algebraic $K$-theory,\nanalogous to To\\\"en's secondary $K$-theory of $k$. And there is a natural map\nfrom this categorified algebraic $K$-theory to the classical variant.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"188 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hamiltonian elements in algebraic K-theory\",\"authors\":\"Yasha Savelyev\",\"doi\":\"arxiv-2407.21003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recall that topological complex $K$-theory associates to an isomorphism class\\nof a complex vector bundle $E$ over a space $X$ an element of the complex\\n$K$-theory group of $X$. Or from algebraic $K$-theory perspective, one assigns\\na homotopy class $[X \\\\to K (\\\\mathcal{K})]$, where $\\\\mathcal{K}$ is the ring of\\ncompact operators on the Hilbert space. We show that there is an analogous\\nstory for algebraic $K$-theory of a general commutative ring $k$, replacing\\ncomplex vector bundles by certain Hamiltonian fiber bundles. The construction\\nactually first assigns elements in a certain categorified algebraic $K$-theory,\\nanalogous to To\\\\\\\"en's secondary $K$-theory of $k$. And there is a natural map\\nfrom this categorified algebraic $K$-theory to the classical variant.\",\"PeriodicalId\":501119,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Topology\",\"volume\":\"188 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.21003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.21003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recall that topological complex $K$-theory associates to an isomorphism class
of a complex vector bundle $E$ over a space $X$ an element of the complex
$K$-theory group of $X$. Or from algebraic $K$-theory perspective, one assigns
a homotopy class $[X \to K (\mathcal{K})]$, where $\mathcal{K}$ is the ring of
compact operators on the Hilbert space. We show that there is an analogous
story for algebraic $K$-theory of a general commutative ring $k$, replacing
complex vector bundles by certain Hamiltonian fiber bundles. The construction
actually first assigns elements in a certain categorified algebraic $K$-theory,
analogous to To\"en's secondary $K$-theory of $k$. And there is a natural map
from this categorified algebraic $K$-theory to the classical variant.