{"title":"颗粒球状圆柱体填料中近乎零的颗粒非球面性所产生的明显结构各向异性","authors":"Yuwen Sun, Chenyang Wang, Jing Yang, Weijia Shi, Qifan Pang, Yujie Wang, Jianqi Li, Bingwen Hu, Chengjie Xia","doi":"10.1103/physreve.110.014903","DOIUrl":null,"url":null,"abstract":"With magnetic resonance imaging experiments, we study packings of granular spherocylinders with merely 2% asphericity. Evident structural anisotropies across all length scales are identified. Most interestingly, the global nematic order decreases with increasing packing fraction, while the local contact anisotropy shows an opposing trend. We attribute this counterintuitive phenomenon to a competition between gravity-driven ordering aided by frictional contacts and a geometric frustration effect at the marginally jammed state. It is also surprising to notice that such slight particle asphericity can trigger non-negligible correlations between contact-level and mesoscale structures, manifested in drastically different nonaffine structural rearrangements upon compaction from that of granular spheres. These observations can help improve statistical mechanical models for the orientational order transformation of nonspherical granular particle packings, which involves complex interplays between particle shape, frictional contacts, and external force field.","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evident structural anisotropies arising from near-zero particle asphericity in granular spherocylinder packings\",\"authors\":\"Yuwen Sun, Chenyang Wang, Jing Yang, Weijia Shi, Qifan Pang, Yujie Wang, Jianqi Li, Bingwen Hu, Chengjie Xia\",\"doi\":\"10.1103/physreve.110.014903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With magnetic resonance imaging experiments, we study packings of granular spherocylinders with merely 2% asphericity. Evident structural anisotropies across all length scales are identified. Most interestingly, the global nematic order decreases with increasing packing fraction, while the local contact anisotropy shows an opposing trend. We attribute this counterintuitive phenomenon to a competition between gravity-driven ordering aided by frictional contacts and a geometric frustration effect at the marginally jammed state. It is also surprising to notice that such slight particle asphericity can trigger non-negligible correlations between contact-level and mesoscale structures, manifested in drastically different nonaffine structural rearrangements upon compaction from that of granular spheres. These observations can help improve statistical mechanical models for the orientational order transformation of nonspherical granular particle packings, which involves complex interplays between particle shape, frictional contacts, and external force field.\",\"PeriodicalId\":20085,\"journal\":{\"name\":\"Physical review. E\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review. E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physreve.110.014903\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreve.110.014903","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Evident structural anisotropies arising from near-zero particle asphericity in granular spherocylinder packings
With magnetic resonance imaging experiments, we study packings of granular spherocylinders with merely 2% asphericity. Evident structural anisotropies across all length scales are identified. Most interestingly, the global nematic order decreases with increasing packing fraction, while the local contact anisotropy shows an opposing trend. We attribute this counterintuitive phenomenon to a competition between gravity-driven ordering aided by frictional contacts and a geometric frustration effect at the marginally jammed state. It is also surprising to notice that such slight particle asphericity can trigger non-negligible correlations between contact-level and mesoscale structures, manifested in drastically different nonaffine structural rearrangements upon compaction from that of granular spheres. These observations can help improve statistical mechanical models for the orientational order transformation of nonspherical granular particle packings, which involves complex interplays between particle shape, frictional contacts, and external force field.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.